990 resultados para Centrifugal fan
Resumo:
The aim of the thesis is to design a suitable thermal model that can be used as a tool for constructing the TEFC squirrel cage induction machine in addition to the electromagnetic model. A lumped-parameter thermal model is developed. The related problems and aspects of implementation are discussed in details. Losses are calculated analytically and the loss values are used in the thermal model. The sensitivity analysis is introduced to determine the most critical parameters of the model.
Resumo:
Pumppukäytöt vastaavat noin neljännestä Euroopan alueen sähkömoottoreissa kuluvasta energiasta. Energian hinnan nousun vuoksi energian säästäminen ja energiatehokkuus ovat nousseet tärkeään asemaan paljon energiaa kuluttavassa teollisuudessa. Pumppukäyttöjen hyötysuhteen parantaminen on noussut olennaiseen osaan paperi- ja kartonkiteollisuuden energiatehokkuustarkasteluissa. Tässä työssä tarkastellaan kartonkikoneen pumppukäyttöjen toiminnan energiatehokkuutta moottorin virtamittausten perusteella. Analyysi perustuu moottorin akselitehon määrittämiseen ja sen perusteella tehtävään pumpun toimintapisteen laskentaan. Työssä esitellään käytetyt estimointimenetelmät ja niillä saadut tulokset kartonkikoneen pumppukäytöille. Lisäksi työssä arvioidaan kolmen yksittäisen pumppukäytön energiankulutuksen säästöpotentiaalia. Työssä käytettyä menetelmää voidaan käyttää sekä vakio- että vaihtonopeuspumppukäyttöjen toiminnan ja hyötysuhteen analysointiin.
Resumo:
A high-speed and high-voltage solid-rotor induction machine provides beneficial features for natural gas compressor technology. The mechanical robustness of the machine enables its use in an integrated motor-compressor. The technology uses a centrifugal compressor, which is mounted on the same shaft with the high-speed electrical machine driving it. No gearbox is needed as the speed is determined by the frequency converter. The cooling is provided by the process gas, which flows through the motor and is capable of transferring the heat away from the motor. The technology has been used in the compressors in the natural gas supply chain in the central Europe. New areas of application include natural gas compressors working at the wellheads of the subsea gas reservoir. A key challenge for the design of such a motor is the resistance of the stator insulation to the raw natural gas from the well. The gas contains water and heavy hydrocarbon compounds and it is far harsher than the sales gas in the natural gas supply network. The objective of this doctoral thesis is to discuss the resistance of the insulation to the raw natural gas and the phenomena degrading the insulation. The presence of partial discharges is analyzed in this doctoral dissertation. The breakdown voltage of the gas is measured as a function of pressure and gap distance. The partial discharge activity is measured on small samples representing the windings of the machine. The electrical field behavior is also modeled by finite element methods. Based on the measurements it has been concluded that the discharges are expected to disappear at gas pressures above 4 – 5 bar. The disappearance of discharges is caused by the breakdown strength of the gas, which increases as the pressure increases. Based on the finite element analysis, the physical length of a discharge seen in the PD measurements at atmospheric pressure was approximated to be 40 – 120 m. The chemical aging of the insulation when exposed to raw natural gas is discussed based on a vast set of experimental tests with the gas mixture representing the real gas mixture at the wellhead. The mixture was created by mixing dry hydrocarbon gas, heavy hydrocarbon compounds, monoethylene glycol, and water. The mixture was chosen to be more aggressive by increasing the amount of liquid substances. Furthermore, the temperature and pressure were increased, which resulted in accelerated test conditions. The time required to detect severe degradation was thus decreased. The test program included a comparison of materials, an analysis of the e ects of di erent compounds in the gas mixture, namely water and heavy hydrocarbons, on the aging, an analysis of the e ects of temperature and exposure duration, and also an analysis on the e ect of sudden pressure changes on the degradation of the insulating materials. It was found in the tests that an insulation consisting of mica, glass, and epoxy resin can tolerate the raw natural gas, but it experiences some degradation. The key material in the composite insulation is the resin, which largely defines the performance of the insulation system. The degradation of the insulation is mostly determined by the amount of gas mixture di used into it. The di usion was seen to follow Fick’s second law, but the coe cients were not accurately defined. The di usion was not sensitive to temperature, but it was dependent upon the thermodynamic state of the gas mixture, in other words, the amounts of liquid components in the gas. The weight increase observed was mostly related to heavy hydrocarbon compounds, which act as plasticizers in the epoxy resin. The di usion of these compounds is determined by the crosslink density of the resin. Water causes slight changes in the chemical structure, but these changes do not significantly contribute to the aging phenomena. Sudden changes in pressure can lead to severe damages in the insulation, because the motion of the di used gas is able to create internal cracks in the insulation. Therefore, the di usion only reduces the mechanical strength of the insulation, but the ultimate breakdown can potentially be caused by a sudden drop in the pressure of the process gas.
Resumo:
In this thesis, a computer software for defining the geometry for a centrifugal compressor impeller is designed and implemented. The project is done under the supervision of Laboratory of Fluid Dynamics in Lappeenranta University of Technology. This thesis is similar to the thesis written by Tomi Putus (2009) in which a centrifugal compressor impeller flow channel is researched and commonly used design practices are reviewed. Putus wrote a computer software which can be used to define impeller’s three-dimensional geometry based on the basic geometrical dimensions given by a preliminary design. The software designed in this thesis is almost similar but it uses a different programming language (C++) and a different way to define the shape of the impeller meridional projection.
Resumo:
Kunnossapidon kuluista suurimman osan aiheuttavat koneiden ennakoimattomat rikkoutumiset ja niiden tuomat tuotannonpysäytykset. Kunnossapidon suunnitelmallisuutta ja vikojen ennustettavuutta pyritään parantamaan erilaisin kunnonvalvonnallisin keinoin. Havaitsemalla alkava vikaantuminen ajoissa ja seuraamalla sen kehittymistä luodaan mahdollisuus korjaustoimenpiteiden ja -ajankohdan hallittuun suunnitteluun ja tätä kautta kustannussäästöihin. Tässä työssä on tutkittu kompressoriyksiköiden (kaasuturbiini ja keskipakokompressori) ja niiden apulaitteiden kunnossapidon menetelmiä, niiden hyödynnettävyyttä sekä mahdollisuuksia kehittää mekaanista kunnonhallintaa. Työssä päädyttiin johtopäätökseen, että käytettävien menetelmien hyödynnettävyydessä on kehitettävää. Kunnonvalvonnan ohjeistuksia tarkennettiin vastaamaan tämän päivän tavoitteita. Todettiin myös, että värähtelynvalvontaan perustuva kunnonvalvontajärjestelmä soveltuu hyvin kompressoriyksiköiden kunnonvalvonnan järjestelmäksi. Värähtelynvalvontaan perustuva kunnonvalvontajärjestelmä luo mahdollisuuden turvallisen käyttöajan ennustamiseen. Kunnonvalvonnan kehittämisen ja käyttövarmuuden parantamisen kannalta jatkotutkimuksen tekeminen kompressoriyksiköiden mekaanistenlaitteiden turvallisen käyttöajan ennustamiseksi on perusteltua.
Resumo:
The potential for enhancing the energy efficiency of industrial pumping processes is estimated to be in some cases up to 50 %. One way to define further this potential is to implement techniques in accordance to definition of best available techniques in pumping applications. These techniques are divided into three main categories: Design, control method & maintenance and distribution system. In the theory part of this thesis first the definition of best available techniques (BAT) and its applicability on pumping processes is issued. Next, the theory around pumping with different pump types is handled, the main stress being in centrifugal pumps. Other components needed in a pumping process are dealt by presenting different control methods, use of an electric motor, variable speed drive and the distribution system. Last part of the theory is about industrial pumping processes from water distribution, sewage water and power plant applications, some of which are used further on in the empirical part as example cases. For the empirical part of this study four case studies on typical pumping processes from older Master’s these were selected. Firstly the original results were analyzed by studying the distribution of energy consumption between different system components and using the definition of BAT in pumping, possible ways to improve energy efficiency were evaluated. The goal in this study was that by the achieved results it would be possible to identify the characteristic energy consumption of these and similar pumping processes. Through this data it would then be easier to focus energy efficiency actions where they might be the most applicable, both technically and economically.
Resumo:
This work is a study of the implementation of a classical controller using a tuning method referred to as IMC (Internal Model Control) and aimed at the reduction of electrical energy consumption by the appropriate relation between energy consumption and the cooling time with forced air. The supervisory system installed was able to manipulate the variable of frequency of the signal power of the exhaust fan engine (forced air module), to accelerate or decelerate the loss of heat from the product to be cooled by airflow variation that passes through the mass of the produce. The results demonstrated a reduction in energy consumption from 64% and an increase of only 8% in the cooling time to the system using PI/IMC (Proportional - Integral with IMC) tuning method compared with the system in its operating nominal condition. This PI/IMC control may be implemented directly in a frequency converter, without the need to purchase a computer or PLC (programmable logic controller) to run the dedicated application, increasing its economical viability.
Resumo:
This study defined the main adjuvant characteristics that may influence or help to understand drift formation process in the agricultural spraying. It was evaluated 33 aqueous solutions from combinations of various adjuvants and concentrations. Then, drifting was quantified by means of wind tunnel; and variables such as percentage of droplets smaller than 50 μm (V50), 100 μm (V100), diameter of mean volume (DMV), droplet diameter composing 10% of the sprayed volume (DV0.1), viscosity, density and surface tension. Assays were performed in triplicate, using Teejet XR8003 flat fan nozzles at 200 kPa (medium size droplets). Spray solutions were stained with Brilliant Blue Dye at 0.6% (m/ v). DMV, V100, viscosity cause most influence on drift hazardous. Adjuvant characteristics and respective methods of evaluation have applicability in drift risk by agricultural spray adjuvants.
Resumo:
ABSTRACT Tractor traveling speed can influence the quality of spraying depending on the application technology used. This study aimed to evaluate the droplet spectrum, the deposition and uniformity of spray distribution with different spraying systems and traveling speeds of a self-propelled sprayer in two phenological stages of the cotton plant (B9 and F13). The experimental design was randomized blocks and treatments were three spraying techniques: common flat spray tips; tilted flat jet with air induction, at 120 L ha-1; and rotary atomizer disk, 20 L ha-1, combined with four traveling speeds: 12, 15, 18 and 25 km h-1, with four replications. Spraying deposition was evaluated for both leaf surfaces from the cotton plant apex and base (stage B9) and middle part of the plant (stage F13) with a cupric marker. A laser particle analyzer also assessed the droplet spectrum. The centrifugal power spray system produces more homogeneous droplet spectrum and increased penetration of droplets into the canopy in both phenological stages. Variation on the operating conditions necessary for increased traveling speed negatively influences the pattern of spraying deposits.
Resumo:
OBJETIVO: Verificar o efeito da adição do biofeedback (BF) ao treinamento dos músculos do assoalho pélvico (TMAP) para o tratamento da incontinência urinária de esforço (IUE). MÉTODOS: Estudo piloto prospectivo, randomizado e controlado, com mulheres com IUE sem deficiência esfincteriana detectada ao estudo urodinâmico e que realizavam a correta contração dos MAP. Foram excluídas mulheres com doenças neuromusculares e com prolapso genital graus III e IV. Foram randomizadas 40 mulheres em Grupo Controle e Grupo BF. O protocolo de TMAP com equipamento de BF foi constituído de três séries de dez contrações lentas (tônicas), com tempo de manutenção de seis a oito segundos em cada contração, seguido de um período de repouso de mesmo valor. Após cada contração sustentada, eram realizadas de três a quatro contrações rápidas (fásicas) em decúbito dorsal e ortostatismo, duas vezes na semana, totalizando 12 sessões. Avaliou-se o efeito da adição do BF ao TMAP na qualidade de vida pelo King's Health Questionnaire (KHQ), nos sintomas urinários pelo diário miccional e na função dos músculos do assoalho pélvico (MAP) pela palpação digital. A avaliação foi realizada inicialmente e após as 12 sessões de tratamento. O resultado foi descrito em médias e desvios padrão. Para análise de homogeneidade e verificação das diferenças entre os grupos utilizou-se o teste de Mann-Whitney, e para diferenças entre os momentos de observação, o teste de Wilcoxon, com nível de significância de 0,05. RESULTADOS: Diminuição significativa nos escores dos domínios avaliados pelo KHQ na comparação entre os grupos, exceto para o domínio saúde geral (Grupo BF 32,8±26,9 versus Grupo Controle 48,4±29,5; p<0,13). Em concordância, observou-se melhora da função dos MAP após o tratamento no grupo BF, na power (4,3±0,8; p=0,001), endurance (6,0±2,2; p<0,001) e fast (9,3±1,9; p=0,001). Quando comparados os grupos, o Grupo BF destacou-se positivamente em relação ao power (Grupo BF 4,3±0,8 versus Grupo Controle 2,5±0,9; p<0,001), endurance (Grupo BF 6,0±2,2 versus Grupo Controle 2,7±1,9; p<0,001) e fast (Grupo BF 9,3±1,9 versus Grupo Controle 4,6±3,2; p<0,001). Redução da frequência urinária noturna (1,2±1,2 versus 0,7±0,9; p=0,02) e da perda de urina nos esforços (1,5±1,4 versus 0,6±0,8; p=0,001) foi observada no Grupo BF. CONCLUSÃO: A adição do BF ao TMAP para o tratamento da IUE, aplicado de acordo com o protocolo descrito, contribui para melhora da função dos MAP, redução dos sintomas urinários e melhora da qualidade de vida.
Resumo:
Besides the sustaining of healthy and comfortable indoor climate, the air conditioning system should also achieve for energy efficiency. The target indoor climate can be ob-tained with different systems; this study focuses on comparing the energy efficiency of different air conditioning room unit systems in different climates. The calculations are made with dynamic energy simulation software IDA ICE by comparing the indoor cli-mate and energy consumption of an office building with different systems in different climates. The aim of the study is to compare the energy efficiency of chilled beam systems to other common systems: variable air volume, fan coil and radiant ceiling systems. Besides the annual energy consumption also the sustainability of target indoor climate is compared between the simulations. Another aim is to provide conclusions to be used in the product development of the chilled beam systems’ energy efficiency. The adaptable chilled beam system and the radiant ceiling system prove to be energy efficient independent of the climate. The challenge of reliable comparison is that other systems are not able to reach the target indoor climate as well as the others. The complex calculation environment of the simulation software, made assumptions and excluding of the financial aspects complicate comparing the big picture. The results show that the development of the chilled beam systems should concentrate on energy efficient night heating, flexible demand based ventilation and capacity control and possibilities on integrating the best practices with other systems.
Resumo:
Transportation of fluids is one of the most common and energy intensive processes in the industrial and HVAC sectors. Pumping systems are frequently subject to engineering malpractice when dimensioned, which can lead to poor operational efficiency. Moreover, pump monitoring requires dedicated measuring equipment, which imply costly investments. Inefficient pump operation and improper maintenance can increase energy costs substantially and even lead to pump failure. A centrifugal pump is commonly driven by an induction motor. Driving the induction motor with a frequency converter can diminish energy consumption in pump drives and provide better control of a process. In addition, induction machine signals can also be estimated by modern frequency converters, dispensing with the use of sensors. If the estimates are accurate enough, a pump can be modelled and integrated into the frequency converter control scheme. This can open the possibility of joint motor and pump monitoring and diagnostics, thereby allowing the detection of reliability-reducing operating states that can lead to additional maintenance costs. The goal of this work is to study the accuracy of rotational speed, torque and shaft power estimates calculated by a frequency converter. Laboratory tests were performed in order to observe estimate behaviour in both steady-state and transient operation. An induction machine driven by a vector-controlled frequency converter, coupled with another induction machine acting as load was used in the tests. The estimated quantities were obtained through the frequency converter’s Trend Recorder software. A high-precision, HBM T12 torque-speed transducer was used to measure the actual values of the aforementioned variables. The effect of the flux optimization energy saving feature on the estimate quality was also studied. A processing function was developed in MATLAB for comparison of the obtained data. The obtained results confirm the suitability of this particular converter to provide accurate enough estimates for pumping applications.
Resumo:
Tämän diplomityön tavoitteena on ollut suunnitella radiaalikompressori. Aluksi on tutustuttu radiaalikompressorissa tapahtuviin ilmiöihin, jonka jälkeen radiaalikompressori on suunniteltu. Reunaehtoina suunnittelussa olivat toimilaitteelta saatava teho 250 kW ja sen suurin pyörimisnopeus 500 Hz. Esisuunnittelu on tehty Virtaustekniikan laboratoriossa kehitetyllä CentriFlow-ohjelmalla. Juoksupyörän muoto on suunniteltu viskoosittomilla 2D-malleilla. Juoksupyörän muodon suunniittelussa on käytetty kaupallista AxCent-ohjelmaa. Juoksupyörän muoto on tarkistettu laskennallisen virtausdynamiikan avulla. Virtausmallinnuksessa käytettiin FinFlo-ohjelmaa. Suunnittelun ja mallinnuksen pohjalta valittiin kolme erilaista juoksupyörää valmistukseen.
Resumo:
The pumping processes requiring wide range of flow are often equipped with parallelconnected centrifugal pumps. In parallel pumping systems, the use of variable speed control allows that the required output for the process can be delivered with a varying number of operated pump units and selected rotational speed references. However, the optimization of the parallel-connected rotational speed controlled pump units often requires adaptive modelling of both parallel pump characteristics and the surrounding system in varying operation conditions. The available information required for the system modelling in typical parallel pumping applications such as waste water treatment and various cooling and water delivery pumping tasks can be limited, and the lack of real-time operation point monitoring often sets limits for accurate energy efficiency optimization. Hence, alternatives for easily implementable control strategies which can be adopted with minimum system data are necessary. This doctoral thesis concentrates on the methods that allow the energy efficient use of variable speed controlled parallel pumps in system scenarios in which the parallel pump units consist of a centrifugal pump, an electric motor, and a frequency converter. Firstly, the suitable operation conditions for variable speed controlled parallel pumps are studied. Secondly, methods for determining the output of each parallel pump unit using characteristic curve-based operation point estimation with frequency converter are discussed. Thirdly, the implementation of the control strategy based on real-time pump operation point estimation and sub-optimization of each parallel pump unit is studied. The findings of the thesis support the idea that the energy efficiency of the pumping can be increased without the installation of new, more efficient components in the systems by simply adopting suitable control strategies. An easily implementable and adaptive control strategy for variable speed controlled parallel pumping systems can be created by utilizing the pump operation point estimation available in modern frequency converters. Hence, additional real-time flow metering, start-up measurements, and detailed system model are unnecessary, and the pumping task can be fulfilled by determining a speed reference for each parallel-pump unit which suggests the energy efficient operation of the pumping system.