998 resultados para Calcite saturation state
Resumo:
Although anthropogenic infuences such as global warming, overfishing, and eutrophication may contribute to jellyfish blooms, little is known about the effects of ocean acidification on jellyfish. Most medusae form statoliths of calcium sulfate hemihydrate that are components of their balance organs (statocysts). This study was designed to test the effects of pH (7.9, within the average current range, 7.5, expected by 2100, and 7.2, expected by 2300) combined with two temperatures (9 and 15°C) on asexual reproduction and statolith formation of the moon jellyfish, Aurelia labiata. Polyp survival was 100% after 122 d in seawater in all six temperature and pH combinations. Because few polyps at 9°C strobilated, and temperature effects on budding were consistent with published results, we did not analyze data from those three treatments further. At 15°C, there were no significant effects of pH on the numbers of ephyrae or buds produced per polyp or on the numbers of statoliths per statocyst; however, statolith size was signi?cantly smaller in ephyrae released from polyps reared at low pH. Our results indicate that A. labiata polyps are quite tolerant of low pH, surviving and reproducing asexually even at the lowest tested pH; however, the effects of small statoliths on ephyra fitness are unknown. Future research on the behavior of ephyrae with small statoliths would further our understanding of how ocean acidi?cation may affect jellyfish survival in nature.
Resumo:
The coccolithophore Calcidiscus leptoporus (strain RCC1135) was grown in dilute batch culture at CO2 levels ranging from ~200 to ~1600 µatm. Increasing CO2 concentration led to an increased percentage of malformed coccoliths and eventually (at ~1500 µatm CO2) to aggregation of cells. Carbonate chemistry of natural seawater was manipulated in three ways: first, addition of acid; second, addition of a HCO3/CO3 solution; and third, addition of both acid and HCO3/CO3 solution. The data set allowed the disentangling of putative effects of the different parameters of the carbonate system. It is concluded that CO2 is the parameter of the carbonate system which causes both aberrant coccolithogenesis and aggregation of cells.
Resumo:
As a consequence of anthropogenic CO2 emissions, oceans are becoming more acidic, a phenomenon known as ocean acidification. Many marine species predicted to be sensitive to this stressor are photosymbiotic, including corals and foraminifera. However, the direct impact of ocean acidification on the relationship between the photosynthetic and nonphotosynthetic organism remains unclear and is complicated by other physiological processes known to be sensitive to ocean acidification (e.g. calcification and feeding). We have studied the impact of extreme pH decrease/pCO2 increase on the complete life cycle of the photosymbiotic, non-calcifying and pure autotrophic acoel worm, Symsagittifera roscoffensis. Our results show that this species is resistant to high pCO2 with no negative or even positive effects on fitness (survival, growth, fertility) and/or photosymbiotic relationship till pCO2 up to 54 K µatm. Some sub-lethal bleaching is only observed at pCO2 up to 270 K µatm when seawater is saturated by CO2. This indicates that photosymbiosis can be resistant to high pCO2. If such a finding would be confirmed in other photosymbiotic species, we could then hypothesize that negative impact of high pCO2 observed on other photosymbiotic species such as corals and foraminifera could occur through indirect impacts at other levels (calcification, feeding).
Resumo:
Along with increasing oceanic CO2 concentrations, enhanced stratification constrains phytoplankton to shallower upper mixed layers with altered light regimes and nutrient concentrations. Here, we investigate the effects of elevated pCO2 in combination with light or nitrogen-limitation on 13C fractionation (epsilon p) in four dinoflagellate species. We cultured Gonyaulax spinifera and Protoceratium reticulatum in dilute batches under low-light (LL) and high-light (HL) conditions, and grew Alexandrium fundyense and Scrippsiella trochoidea in nitrogen-limited continuous cultures (LN) and nitrogen-replete batches (HN). The observed CO2-dependency of epsilon p remained unaffected by the availability of light for both G. spinifera and P. reticulatum, though at HL epsilon p was consistently lower by about 2.7 per mil over the tested CO2 range for P. reticulatum. This may reflect increased uptake of (13C-enriched) bicarbonate fueled by increased ATP production under HL conditions. The observed CO2-dependency of epsilon p disappeared under LN conditions in both A. fundyense and S. trochoidea. The generally higher epsilon p under LN may be associated with lower organic carbon production rates and/or higher ATP:NADPH ratios. CO2-dependent epsilon p under non-limiting conditions has been observed in several dinoflagellate species, showing potential for a new CO2-proxy. Our results however demonstrate that light- and nitrogen-limitation also affect epsilon p, thereby illustrating the need to carefully consider prevailing environmental conditions.
Resumo:
Since the industrial revolution, [CO2]atm has increased from 280 µatm to levels now exceeding 380 µatm and is expected to rise to 730-1,020 µatm by the end of this century. The consequent changes in the ocean's chemistry (e.g., lower pH and availability of the carbonate ions) are expected to pose particular problems for marine organisms, especially in the more vulnerable early life stages. The aim of this study was to investigate how the future predictions of ocean acidification may compromise the metabolism and swimming capabilities of the recently hatched larvae of the tropical dolphinfish (Coryphaena hippurus). Here, we show that the future environmental hypercapnia (delta pH 0.5; 0.16 % CO2, ~1,600 µatm) significantly (p < 0.05) reduced oxygen consumption rate up to 17 %. Moreover, the swimming duration and orientation frequency also decreased with increasing pCO2 (50 and 62.5 %, respectively). We argue that these hypercapnia-driven metabolic and locomotory challenges may potentially influence recruitment, dispersal success, and the population dynamics of this circumtropical oceanic top predator.
Resumo:
Global warming and ocean acidification are among the most important stressors for aquatic ecosystems in the future. To investigate their direct and indirect effects on a near-natural plankton community, a multiple-stressor approach is needed. Hence, we set up mesocosms in a full-factorial design to study the effects of both warming and high CO2 on a Baltic Sea autumn plankton community, concentrating on the impacts on microzooplankton (MZP). MZP abundance, biomass, and species composition were analysed over the course of the experiment. We observed that warming led to a reduced time-lag between the phytoplankton bloom and an MZP biomass maximum. MZP showed a significantly higher growth rate and an earlier biomass peak in the warm treatments while the biomass maximum was not affected. Increased pCO2 did not result in any significant effects on MZP biomass, growth rate, or species composition irrespective of the temperature, nor did we observe any significant interactions between CO2 and temperature. We attribute this to the high tolerance of this estuarine plankton community to fluctuations in pCO2, often resulting in CO2 concentrations higher than the predicted end-of-century concentration for open oceans. In contrast, warming can be expected to directly affect MZP and strengthen its coupling with phytoplankton by enhancing its grazing pressure.
Resumo:
We investigated the effects of elevated pCO2 in seawater both on the acute mortality and the reproductive properties of the benthic copepod Tigriopus japonicus and gastropod Babylonia japonica with the purpose of accumulating basic data for assessing potential environmental impacts of sub-sea geological storage of anthropogenic CO2 in Japan. Acute tests showed that nauplii of T. japonicus have a high tolerance to elevated pCO2 environments. Full life cycle tests on T. japonicus indicated NOEC = 5800 µatm and LOEC = 37,000 µatm. Adult B. japonica showed remarkable resistance to elevated pCO2 in the acute tests. Embryonic development of B. japonica showed a NOEC = 1500 µatm and LOEC = 5400 µatm. T. japonicus showed high resistance to elevated pCO2 throughout the life cycle and B. japonica are rather sensitive during the veliger stage when they started to form their shells.
Resumo:
Determining which marine species are sensitive to elevated CO2 and reduced pH, and which species tolerate these changes, is critical for predicting the impacts of ocean acidification on marine biodiversity and ecosystem function. Although adult fish are thought to be relatively tolerant to higher levels of environmental CO2, very little is known about the sensitivity of juvenile stages, which are usually much more vulnerable to environmental change. We tested the effects of elevated environmental CO2 on the growth, survival, skeletal development and otolith (ear bone) calcification of a common coral reef fish, the spiny damselfish Acanthochromis polyacanthus. Newly hatched juveniles were reared for 3 wk at 4 different levels of PCO2(seawater) spanning concentrations already experienced in near-reef waters (450 µatm CO2) to those predicted to occur over the next 50 to 100 yr in the IPCC A2 emission scenario (600, 725, 850 µatm CO2). Elevated PCO2 had no effect on juvenile growth or survival. Similarly, there was no consistent variation in the size of 29 different skeletal elements that could be attributed to CO2 treatments. Finally, otolith size, shape and symmetry (between left and right side of the body) were not affected by exposure to elevated PCO2, despite the fact that otoliths are composed of aragonite. This is the first comprehensive assessment of the likely effects of ocean acidification on the early life history development of a marine fish. Our results suggest that juvenile A. polyacanthus are tolerant of moderate increases in environmental CO2 and that further acidification of the ocean will not, in isolation, have a significant effect on the early life history development of this species, and perhaps other tropical reef fishes
Resumo:
Iron (Fe) can limit phytoplankton productivity in approximately 40% of the global ocean, including in high-nutrient, low-chlorophyll (HNLC) waters. However, there is little information available on the impact of CO2-induced seawater acidification on natural phytoplankton assemblages in HNLC regions. We therefore conducted an on-deck experiment manipulating CO2 and Fe using Fe-deficient Bering Sea water during the summer of 2009. The concentrations of CO2 in the incubation bottles were set at 380 and 600 ppm in the non-Fe-added (control) bottles and 180, 380, 600, and 1000 ppm in the Fe-added bottles. The phytoplankton assemblages were primarily composed of diatoms followed by haptophytes in all incubation bottles as estimated by pigment signatures throughout the 5-day (control) or 6-day (Fe-added treatment) incubation period. At the end of incubation, the relative contribution of diatoms to chlorophyll a biomass was significantly higher in the 380 ppm CO2 treatment than in the 600 ppm treatment in the controls, whereas minimal changes were found in the Fe-added treatments. These results indicate that, under Fe-deficient conditions, the growth of diatoms could be negatively affected by the increase in CO2 availability. To further support this finding, we estimated the expression and phylogeny of rbcL (which encodes the large subunit of RuBisCO) mRNA in diatoms by quantitative reverse transcription polymerase chain reaction (PCR) and clone library techniques, respectively. Interestingly, regardless of Fe availability, the transcript abundance of rbcL decreased in the high CO2 treatments (600 and 1000 ppm). The present study suggests that the projected future increase in seawater pCO2 could reduce the RuBisCO transcription of diatoms, resulting in a decrease in primary productivity and a shift in the food web structure of the Bering Sea.
Resumo:
In the context of future scenarios of progressive accumulation of anthropogenic CO2 in marine surface waters, the present study addresses the effects of long-term hypercapnia on a Mediterranean bivalve, Mytilus galloprovincialis. Sea-water pH was lowered to a value of 7.3 by equilibration with elevated CO2 levels. This is close to the maximum pH drop expected in marine surface waters during atmosextracellular pHric CO2 accumulation. Intra- and extracellular acid-base parameters as well as changes in metabolic rate and growth were studied under both normocapnia and hypercapnia. Long-term hypercapnia caused a permanent reduction in haemolymph pH. To limit the degree of acidosis, mussels increased haemolymph bicarbonate levels, which are derived mainly from the dissolution of shell CaCO3. Intracellular pH in various tissues was at least partly compensated; no deviation from control values occurred during long-term measurements in whole soft-body tissues. The rate of oxygen consumption fell significantly, indicating a lower metabolic rate. In line with previous reports, a close correlation became evident between the reduction in extracellular pH and the reduction in metabolic rate of mussels during hypercapnia. Analysis of frequency histograms of growth rate revealed that hypercapnia caused a slowing of growth, possibly related to the reduction in metabolic rate and the dissolution of shell CaCO3 as a result of extracellular acidosis. In addition, increased nitrogen excretion by hypercapnic mussels indicates the net degradation of protein, thereby contributing to growth reduction. The results obtained in the present study strongly indicate that a reduction in sea-water pH to 7.3 may be fatal for the mussels. They also confirm previous observations that a reduction in sea-water pH below 7.5 is harmful for shelled molluscs.
Resumo:
In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2015) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation is 2016-10-12.
Resumo:
Euryhaline decapod crustaceans possess an efficient regulation apparatus located in the gill epithelia, providing a high adaptation potential to varying environmental abiotic conditions. Even though many studies focussed on the osmoregulatory capacity of the gills, acid-base regulatory mechanisms have obtained much less attention. In the present study, underlying principles and effects of elevated pCO2 on acid-base regulatory patterns were investigated in the green crab Carcinus maenas acclimated to diluted seawater. In gill perfusion experiments, all investigated gills 4-9 were observed to up-regulate the pH of the hemolymph by 0.1-0.2 units. Anterior gills, especially gill 4, were identified to be most efficient in the equivalent proton excretion rate. Ammonia excretion rates mirrored this pattern among gills, indicating a linkage between both processes. In specimen exposed to elevated pCO2 levels for at least 7 days, mimicking a future ocean scenario as predicted until the year 2300, hemolymph K+ and ammonia concentrations were significantly elevated, and an increased ammonia excretion rate was observed. A detailed quantitative gene expression analysis revealed that upon elevated pCO2 exposure, mRNA levels of transcripts hypothesized to be involved in ammonia and acid-base regulation (Rhesus-like protein, membrane-bound carbonic anhydrase, Na+/K+-ATPase) were affected predominantly in the non-osmoregulating anterior gills.
Resumo:
There are serious concerns that ocean acidification will combine with the effects of global warming to cause major shifts in marine ecosystems, but there is a lack of field data on the combined ecological effects of these changes due to the difficulty of creating large-scale, long-term exposures to elevated CO2 and temperature. Here we report the first coastal transplant experiment designed to investigate the effects of naturally acidified seawater on the rates of net calcification and dissolution of the branched calcitic bryozoan Myriapora truncata (Pallas, 1766). Colonies were transplanted to normal (pH 8.1), high (mean pH 7.66, minimum value 7.33) and extremely high CO2 conditions (mean pH 7.43, minimum value 6.83) at gas vents off Ischia Island (Tyrrhenian Sea, Italy). The net calcification rates of live colonies and the dissolution rates of dead colonies were estimated by weighing after 45 days (May-June 2008) and after 128 days (July-October) to examine the hypothesis that high CO2 levels affect bryozoan growth and survival differently during moderate and warm water conditions. In the first observation period, seawater temperatures ranged from 19 to 24 °C; dead M. truncata colonies dissolved at high CO2 levels (pH 7.66), whereas live specimens maintained the same net calcification rate as those growing at normal pH. In extremely high CO2 conditions (mean pH 7.43), the live bryozoans calcified significantly less than those at normal pH. Therefore, established colonies of M. truncata seem well able to withstand the levels of ocean acidification predicted in the next 200 years, possibly because the soft tissues protect the skeleton from an external decrease in pH. However, during the second period of observation a prolonged period of high seawater temperatures (25-28 °C) halted calcification both in controls and at high CO2, and all transplants died when high temperatures were combined with extremely high CO2 levels. Clearly, attempts to predict the future response of organisms to ocean acidification need to consider the effects of concurrent changes such as the Mediterranean trend for increased summer temperatures in surface waters. Although M. truncata was resilient to short-term exposure to high levels of ocean acidification at normal temperatures, our field transplants showed that its ability to calcify at higher temperatures was compromised, adding it to the growing list of species now potentially threatened by global warming.
Resumo:
The persistence of most coastal marine species depends on larvae finding suitable adult habitat at the end of an offshore dispersive stage that can last weeks or months. We tested the effects that ocean acidification from elevated levels of atmospheric carbon dioxide (CO2) could have on the ability of larvae to detect olfactory cues from adult habitats. Larval clownfish reared in control seawater (pH 8.15) discriminated between a range of cues that could help them locate reef habitat and suitable settlement sites. This discriminatory ability was disrupted when larvae were reared in conditions simulating CO2-induced ocean acidification. Larvae became strongly attracted to olfactory stimuli they normally avoided when reared at levels of ocean pH that could occur ca. 2100 (pH 7.8) and they no longer responded to any olfactory cues when reared at pH levels (pH 7.6) that might be attained later next century on a business-as-usual carbon-dioxide emissions trajectory. If acidification continues unabated, the impairment of sensory ability will reduce population sustainability of many marine species, with potentially profound consequences for marine diversity.