987 resultados para CALCIUM-OXALATE CRYSTALLIZATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

To determine if calcium scores (CS) could act as a more effective gatekeeper than Diamond Forrester (DF) in the assessment of patients with suspected coronary artery disease (CAD). A sub-study of the Cardiac CT for the Assessment of Chest Pain and Plaque (CAPP) study, a randomised control trial evaluating the cost-effectiveness of cardiac CT in symptomatic patients with stable chest pain. Stable pain was defined as troponin negative pain without symptoms of unstable angina. 250 patients undergoing cardiac CT had both DF scores and CS calculated, with the accuracy of both evaluated against CT coronary angiogram. Criteria given in UK national guidelines were compared. Of the 250 patients, 4 withdrew. 140 (57 %) patients were male. The mean DF was 47.8 and mean CS 172.5. Of the 144 patients with non-anginal pain 19.4 % had significant disease (>50 % stenosis). In general the DF over estimated the presence of CAD whereas the CS reclassified patients to lower risk groups, with 91 in the high risk DF category compared to 26 in the CS. Both receiver operating curve and McNemar Bowker test analysis suggested the DF was less accurate in the prediction of CAD compared to CS [Formula: see text] Projected downstream investigations were also calculated, with the cost per number of significant stenoses identified cheaper with the CS criteria. Patients with suspected stable CAD are more accurately risk stratified by CS compared to the traditional DF. CS was more successful in the prediction of significant stenosis and appears to be more effective at targeting clinical resources to those patients that are in need of them.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acutohaemolysin, a phospholipase A2 (PLA2) from the venom of the snake Agkistrodon acutus, has been isolated and purified to homogeneity by anion-exchange chromatography on a DEAE-Sepharose column followed by cation-exchange chromatography on a CM-Sepharose column. It is an alkaline protein with an isoelectric point of 10.5 and is comprised of a single polypeptide chain of 13 938 Da. Its N-terminal amino-acid sequence shows very high similarity to Lys49-type PLA2 proteins from other snake venoms. Although its PLA2 enzymatic activity is very low, acutohaemolysin has a strong indirect haemolytic activity and anticoagulant activity. Acutohaemolysin crystals with a diffraction limit of 1.60 Å were obtained by the hanging-drop vapour-diffusion method. The crystals belong to the space group C2, with unit-cell parameters a = 45.30, b = 59.55, c = 46.13 Å, [beta] = 117.69°. The asymmetric unit contains one molecule

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the study was to use a computational and experimental approach to evaluate, compare and predict the ability of calcium phosphate (CaP) and poly (methyl methacrylate) (PMMA) augmentation cements to restore mechanical stability to traumatically fractured vertebrae, following a vertebroplasty procedure. Traumatic fractures (n = 17) were generated in a series of porcine vertebrae using a drop-weight method. The fractured vertebrae were imaged using μCT and tested under axial compression. Twelve of the fractured vertebrae were randomly selected to undergo a vertebroplasty procedure using either a PMMA (n = 6) or a CaP cement variation (n = 6). The specimens were imaged using μCT and re-tested. Finite element models of the fractured and augmented vertebrae were generated from the μCT data and used to compare the effect of fracture void fill with augmented specimen stiffness. Significant increases (p <0.05) in failure load were found for both of the augmented specimen groups compared to the fractured group. The experimental and computational results indicated that neither the CaP cement nor PMMA cement could completely restore the vertebral mechanical behavior to the intact level. The effectiveness of the procedure appeared to be more influenced by the volume of fracture filled rather than by the mechanical properties of the cement itself.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increased adult cardiac fibroblast proliferation results in an increased collagen deposition responsible for the fibrosis accompanying pathological remodelling of the heart. The mechanisms regulating cardiac fibroblast proliferation remain poorly understood. Using a minimally invasive transverse aortic banding (MTAB) mouse model of cardiac hypertrophy, we have assessed fibrosis and cardiac fibroblast proliferation. We have investigated whether calcium/calmodulin-dependent protein kinase IIδ (CaMKIIδ) regulates proliferation in fibroblasts isolated from normal and hypertrophied hearts. It is known that CaMKIIδ plays a central role in cardiac myocyte contractility, but nothing is known of its role in adult cardiac fibroblast function. The MTAB model used here produces extensive hypertrophy and fibrosis. CaMKIIδ protein expression and activity is upregulated in MTAB hearts and, specifically, in cardiac fibroblasts isolated from hypertrophied hearts. In response to angiotensin II, cardiac fibroblasts isolated from MTAB hearts show increased proliferation rates. Inhibition of CaMKII with autocamtide inhibitory peptide inhibits proliferation in cells isolated from both sham and MTAB hearts, with a significantly greater effect evident in MTAB cells. These results are the first to show selective upregulation of CaMKIIδ in adult cardiac fibroblasts following cardiac hypertrophy and to assign a previously unrecognised role to CaMKII in regulating adult cardiac fibroblast function in normal and diseased hearts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The broad aim of this work was to investigate and optimise the properties of calcium phosphate bone cements (CPCs) for use in vertebroplasty to achieve effective primary fixation of spinal fractures. The incorporation of collagen, both bovine and from a marine sponge (Chondrosia reniformis), into a CPC was investigated. The biological properties of the CPC and collagen-CPC composites were assessed in vitro through the use of human bone marrow stromal cells. Cytotoxicity, proliferation and osteoblastic differentiation were evaluated using lactate dehydrogenase, PicoGreen and alkaline phosphatase activity assays respectively. The addition of both types of collagen resulted in an increase in cytotoxicity, albeit not to a clinically relevant level. Cellular proliferation after 1, 7 and 14 days was unchanged. The osteogenic potential of the CPC was reduced through the addition of bovine collagen but remained unchanged in the case of the marine collagen. These findings, coupled with previous work showing that incorporation of marine collagen in this way can improve the physical properties of CPCs, suggest that such a composite may offer an alternative to CPCs in applications where low setting times and higher mechanical stability are important.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crystallization of integral membrane proteins is a challenging field and much effort has been invested in optimizing the overexpression and purification steps needed to obtain milligram amounts of pure, stable, monodisperse protein sample for crystallography studies. Our current work involves the structural and functional characterization of the Escherichia coli multidrug resistance transporter MdtM, a member of the major facilitator superfamily (MFS). Here we present a protocol for isolation of MdtM to increase yields of recombinant protein to the milligram quantities necessary for pursuit of structural studies using X-ray crystallography. Purification of MdtM was enhanced by introduction of an elongated His-tag, followed by identification and subsequent removal of chaperonin contamination. For crystallization trials of MdtM, detergent screening using size exclusion chromatography determined that decylmaltoside (DM) was the shortest-chain detergent that maintained the protein in a stable, monodispersed state. Crystallization trials of MdtM performed using the hanging-drop diffusion method with commercially available crystallization screens yielded 3D protein crystals under several different conditions. We contend that the purification protocol described here may be employed for production of high-quality protein of other multidrug efflux members of the MFS, a ubiquitous, physiologically and clinically important class of membrane transporters.