885 resultados para Bile ducts.
Resumo:
In the Oil industry, oil and gas pipelines are commonly utilized to perform the transportation of production fluids to longer distances. The maintenance of the pipelines passes through the analysis of several tools, in which the most currently used are the pipelines inspection cells, popularly knowing as PIG. Among the variants existing in the market, the instrumented PIG has a significant relevance; acknowledging that through the numerous sensors existing in the equipment, it can detect faults or potential failure along the inspected line. Despite its versatility, the instrumented PIG suffers from speed variations, impairing the reading of sensors embedded in it. Considering that PIG moves depending on the speed of the production fluid, a way to control his speed is to control the flow of the fluid through the pressure control, reducing the flow rate of the produced flow, resulting in reduction of overall production the fluid in the ducts own or with the use of a restrictive element (valve) installed on it. The characteristic of the flow rate/pressure drop from restrictive elements of the orifice plate is deducted usually from the ideal energy equation (Bernoulli’s equation) and later, the losses are corrected normally through experimental tests. Thus, with the objective of controlling the fluids flow passing through the PIG, a valve shutter actuated by solenoid has been developed. This configuration allows an ease control and stabilization of the flow adjustment, with a consequent response in the pressure drops between upstream and downstream of the restriction. It was assembled a test bench for better definition of flow coefficients; composed by a duct with intern diameter of four inches, one set of shutters arranged in a plate and pressure gauges for checking the pressure drop in the test. The line was pressurized and based on the pressure drop it was possible to draw a curve able to characterize the flow coefficient of the control valve prototype and simulate in mockup the functioning, resulting in PIG speed reduction of approximately 68%.
Resumo:
The flows turbulent and laminar are present in various applications of engineering and one of the villain of energy loss big is the surface friction. Currently, there are several research aimed for the study of reducing drag (DR) with the objective of developing effective methods to reduce the friction. Regardless of numerous research carried out until today, the phenomenon DR still remains in study not it is fully understood. This paper studied the drag reduction by polymer induction in turbulent internal flows in ducts. We constructed a testing bench to perform the analysis of drag reduction, the bench has basically two manometers with a 8.5 psi full scale, a peripheral pump 0.5 HP, an acrylic tank, valves and tubes pvc and is situated in the Laboratory Fluid Mechanics UFRN. Were used as polymer additives to polyethylene glycol 4000, the Polyox WSR N60K, Polyox WSR 301 and Polyox WSR 205. The rationale for the choice of these polymers is their wide application in situations requiring greater energy efficiency, such as the addition reducing polymers for the jet used by the fire department to achieve greater distances. The induced drag reduction polymers is investigated from the turbulent flow analysis, with Reynolds number in a range between 2×104
Resumo:
The flows turbulent and laminar are present in various applications of engineering and one of the villain of energy loss big is the surface friction. Currently, there are several research aimed for the study of reducing drag (DR) with the objective of developing effective methods to reduce the friction. Regardless of numerous research carried out until today, the phenomenon DR still remains in study not it is fully understood. This paper studied the drag reduction by polymer induction in turbulent internal flows in ducts. We constructed a testing bench to perform the analysis of drag reduction, the bench has basically two manometers with a 8.5 psi full scale, a peripheral pump 0.5 HP, an acrylic tank, valves and tubes pvc and is situated in the Laboratory Fluid Mechanics UFRN. Were used as polymer additives to polyethylene glycol 4000, the Polyox WSR N60K, Polyox WSR 301 and Polyox WSR 205. The rationale for the choice of these polymers is their wide application in situations requiring greater energy efficiency, such as the addition reducing polymers for the jet used by the fire department to achieve greater distances. The induced drag reduction polymers is investigated from the turbulent flow analysis, with Reynolds number in a range between 2×104
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
La consolidación del fútbol en España se produjo a partir de los años veinte del siglo pasado. Entre 1920 a 1936 el fútbol adquirió todos los rasgos personales que hoy le caracterizan. En esta época surgió una literatura técnica y periodística especializada que se configuró como uno de los pilares más importantes para el desarrollo técnico deportivo y del espectáculo de masas. En torno a esta cuestión, el presente artículo busca un doble objetivo: recopilar la literatura técnica y periodística especializada publicada durante el período de 1920 a 1936, y reconocer el alcance social, técnico e ideológico de esta literatura futbolística en el proceso de configuración del fútbol en España. Para abordar este propósito hemos utilizado una metodología heurística y de análisis documental de las fuentes originales. Apreciamos que a través de estas obras podemos conocer mejor el contexto del espacio socio-deportivo del fútbol en España y, también, despertar nuevas líneas potenciales de investigación.
Resumo:
Introduction: Obestatin is a controversial gastrointestinal peptide purported to have metabolic actions.
Objectives: This study investigated whether treatment with a stable obestatin analogue (PEG-OB(Cys10, Cys13)) changed plasma metabolite levels firstly in lean and subsequently in diet-induced obesity (DIO) C57BL6/J mice.
Methods: Untargeted LC-HRMS metabolomics experiments were carried out in ESI + mode with plasma extracts from both groups of animals. Data were normalised, multivariate and univariate statistical analysis performed and metabolites of interest putatively identified.
Results: In lean mice, 39 metabolites were significantly changed by obestatin treatment and the majority of these were increased, including various C16 and C18 moieties of phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine and monoacylglycerol, along with vitamin A, vitamin D3, tyrosine, acetylcarnitine and 2α-(hydroxymethyl)-5α-androstane-3β,17β-diol. Decreased concentrations of glycolithocholic acid, 3-dehydroteasterone and various phospholipids were observed. In DIO mice, 25 metabolites were significantly affected and strikingly, the magnitudes of changes here were generally much greater in DIO mice than in lean mice, and in contrast, the majority of metabolite changes were decreases. Four metabolites affected in both groups included glycolithocholic acid, and three different long-chain (C18) phospholipid molecules (phosphatidylethanolamine, platelet activating factor (PAF), and monoacylglycerol). Metabolites exclusively affected in DIO mice included various phosphatidylcholines, lysophosphatidylcholines and fatty acyls, as well as creatine and oxidised glutathione.
Conclusion: This investigation demonstrates that obestatin treatment affects phospholipid turnover and influences lipid homeostasis, whilst providing convincing evidence that obestatin may be acting to ameliorate diet-induced impairments in lipid metabolism, and it may influence steroid, bile acid, PAF and glutathione metabolism.
Resumo:
In industrial plants, oil and oil compounds are usually transported by closed pipelines with circular cross-section. The use of radiotracers in oil transport and processing industrial facilities allows calibrating flowmeters, measuring mean residence time in cracking columns, locate points of obstruction or leak in underground ducts, as well as investigating flow behavior or industrial processes such as in distillation towers. Inspection techniques using radiotracers are non-destructive, simple, economic and highly accurate. Among them, Total Count, which uses a small amount of radiotracer with known activity, is acknowledged as an absolute technique for flow rate measurement. A viscous fluid transport system, composed by four PVC pipelines with 13m length (12m horizontal and 1m vertical) and ½, ¾, 1 and 2-inch gauges, respectively, interconnected by maneuvering valves was designed and assembled in order to conduct the research. This system was used to simulate different flow conditions of petroleum compounds and for experimental studies of flow profile in the horizontal and upward directions. As 198Au presents a single photopeak (411,8 keV), it was the radioisotope chosen for oil labeling, in small amounts (6 ml) or around 200 kBq activity, and it was injected in the oil transport lines. A NaI scintillation detector 2”x 2”, with well-defined geometry, was used to measure total activity, determine the calibration factor F and, positioned after a homogenization distance and interconnected to a standardized electronic set of nuclear instrumentation modules (NIM), to detect the radioactive cloud.
Resumo:
Spontaneous perforation of the common bile duct is rare. It happens predominantly in children and it is related to obstructive disease of the biliary tract. We present a case of an 18 year-old male patient, with ulcerative rectocolitis associated with malignant tumor of the head of pancreas. The patient developed an acute abdomen syndrome and laparotomy, a spontaneous perforation of common bile duct was evidenced. The authors make a revision of the clinical aspects of that pathology
Resumo:
Insulin resistance (IR) and impaired insulin secretion contribute to type 2 diabetes and cardiovascular disease. Both are associated with changes in the circulating metabolome, but causal directions have been difficult to disentangle. We combined untargeted plasma metabolomics by liquid chromatography/mass spectrometry in three non-diabetic cohorts with Mendelian Randomization (MR) analysis to obtain new insights into early metabolic alterations in IR and impaired insulin secretion. In up to 910 elderly men we found associations of 52 metabolites with hyperinsulinemic-euglycemic clamp-measured IR and/or β-cell responsiveness (disposition index) during an oral glucose tolerance test. These implicated bile acid, glycerophospholipid and caffeine metabolism for IR and fatty acid biosynthesis for impaired insulin secretion. In MR analysis in two separate cohorts (n = 2,613) followed by replication in three independent studies profiled on different metabolomics platforms (n = 7,824 / 8,961 / 8,330), we discovered and replicated causal effects of IR on lower levels of palmitoleic acid and oleic acid. A trend for a causal effect of IR on higher levels of tyrosine reached significance only in meta-analysis. In one of the largest studies combining "gold standard" measures for insulin responsiveness with non-targeted metabolomics, we found distinct metabolic profiles related to IR or impaired insulin secretion. We speculate that the causal effects on monounsaturated fatty acid levels could explain parts of the raised cardiovascular disease risk in IR that is independent of diabetes development.
Resumo:
Objective. To analyze clinical and laboratory findings in order to find variables predictive of severity of Biliary Peritonitis (BP). Patients and methods. Physical findings, course of illness, imaging and laboratory data were evaluated in 42 patients with BP, and statistically analysed to assess their prognostic significance. Results. Serious illness and worse outcome were associated with: age ≥ 60 years (P=0.034), long time between onset of symptoms and treatment (P=0.025), fever > 38°C (P=0.009), WBC count > 17,000 cell/mm³ (P=0.043), diffuse abdominal pain (P=0.034), and infected bile (P=0.048). Conclusions. Most patients become severely ill due to supervening infection, while early bile drainage avoids serious complications. In addition, abdominal pain, fever and WBC count are also predictive of severity of BP.
Resumo:
Common bile duct stones can be treated with normal endoscopic techniques. Where stones cannot be removed due to their size or number or due to stenosis of the common bile duct, a plastic stent can be inserted, enabling rapid drainage of bile. At the three-month check-up complete removal of the stones was found in 41 (85.4%) of the 48 patients with difficult choledocholithiasis. In the remaining 7 patients (14.6%), the stent in any case resulted in clinical improvement. A permanent stent was necessary in 4 patients, enabling safe drainage with no complications. The use of endoscopy for stent placement was effective in all our cases of difficult coledocholithiasis without any complications.
Resumo:
Single Incision Laparoscopic Surgery (SILS) is a recent surgical technique, first described in the 1990s. Its aim is to optimize the esthetic result offered by laparoscopy by minimizing the number of abdominal incisions. Various preliminary studies have been carried out on the application of SILS, especially in cholecystectomy and appendectomy. This study evaluates the preliminary results of cholecystectomy by SILS (SILS™ Port) conducted between October 2009 and February 2011 on 21 patients (4 men and 17 women) with a mean age of 49.9 years and a mean Body Mass Index (BMI) of 22.8. All patients were treated by the same team, which had previously undergone six months’ simulator training. There were two main selection criteria, both evaluated intraoperatively: absence of adhesions and of significant inflammatory sequelae from previous cholecystitis; and suitable distance between gallbladder and SILS access port. Conversion to traditional laparoscopy was necessary in just two cases, while an accessory trocar was introduced in another two cases. Conversion to open surgery was not necessary in any case. One case of SILS cholecystectomy was complicated by postoperative bile leakage, which was treated conservatively, as the fistula had a low output. The mean duration of hospitalization was 3.6 days. This preliminary experience led us to conclude that SILS is safe and highly satisfactory in the postoperative phase, thanks to the reduced need for painkillers and the improved esthetic result.
Resumo:
Numerous studies of the dual-mode scramjet isolator, a critical component in preventing inlet unstart and/or vehicle loss by containing a collection of flow disturbances called a shock train, have been performed since the dual-mode propulsion cycle was introduced in the 1960s. Low momentum corner flow and other three-dimensional effects inherent to rectangular isolators have, however, been largely ignored in experimental studies of the boundary layer separation driven isolator shock train dynamics. Furthermore, the use of two dimensional diagnostic techniques in past works, be it single-perspective line-of-sight schlieren/shadowgraphy or single axis wall pressure measurements, have been unable to resolve the three-dimensional flow features inside the rectangular isolator. These flow characteristics need to be thoroughly understood if robust dual-mode scramjet designs are to be fielded. The work presented in this thesis is focused on experimentally analyzing shock train/boundary layer interactions from multiple perspectives in aspect ratio 1.0, 3.0, and 6.0 rectangular isolators with inflow Mach numbers ranging from 2.4 to 2.7. Secondary steady-state Computational Fluid Dynamics studies are performed to compare to the experimental results and to provide additional perspectives of the flow field. Specific issues that remain unresolved after decades of isolator shock train studies that are addressed in this work include the three-dimensional formation of the isolator shock train front, the spatial and temporal low momentum corner flow separation scales, the transient behavior of shock train/boundary layer interaction at specific coordinates along the isolator's lateral axis, and effects of the rectangular geometry on semi-empirical relations for shock train length prediction. A novel multiplane shadowgraph technique is developed to resolve the structure of the shock train along both the minor and major duct axis simultaneously. It is shown that the shock train front is of a hybrid oblique/normal nature. Initial low momentum corner flow separation spawns the formation of oblique shock planes which interact and proceed toward the center flow region, becoming more normal in the process. The hybrid structure becomes more two-dimensional as aspect ratio is increased but corner flow separation precedes center flow separation on the order of 1 duct height for all aspect ratios considered. Additional instantaneous oil flow surface visualization shows the symmetry of the three-dimensional shock train front around the lower wall centerline. Quantitative synthetic schlieren visualization shows the density gradient magnitude approximately double between the corner oblique and center flow normal structures. Fast response pressure measurements acquired near the corner region of the duct show preliminary separation in the outer regions preceding centerline separation on the order of 2 seconds. Non-intrusive Focusing Schlieren Deflectometry Velocimeter measurements reveal that both shock train oscillation frequency and velocity component decrease as measurements are taken away from centerline and towards the side-wall region, along with confirming the more two dimensional shock train front approximation for higher aspect ratios. An updated modification to Waltrup \& Billig's original semi-empirical shock train length relation for circular ducts based on centerline pressure measurements is introduced to account for rectangular isolator aspect ratio, upstream corner separation length scale, and major- and minor-axis boundary layer momentum thickness asymmetry. The latter is derived both experimentally and computationally and it is shown that the major-axis (side-wall) boundary layer has lower momentum thickness compared to the minor-axis (nozzle bounded) boundary layer, making it more separable. Furthermore, it is shown that the updated correlation drastically improves shock train length prediction capabilities in higher aspect ratio isolators. This thesis suggests that performance analysis of rectangular confined supersonic flow fields can no longer be based on observations and measurements obtained along a single axis alone. Knowledge gained by the work performed in this study will allow for the development of more robust shock train leading edge detection techniques and isolator designs which can greatly mitigate the risk of inlet unstart and/or vehicle loss in flight.