977 resultados para Band pass filtering
Resumo:
Decision-making requires the perception of relevant information variables that emerge from the player–environment interaction. The purpose of the present article is to empirically assess whether players’ decisional behavior about which type of pass to make is influenced by the spatio-temporal variable tau. Time series positional data of rugby players were analyzed from video footage taken in real match scenarios. The tau of the distance motion gap between attacker and defender was calculated, along with the duration of the next pass. Results revealed that the initial tau value predicted 64% of the variance found in pass duration. A qualitative distinction of tau dynamics between two periods of the approach between the attacker and the defender was also observed. We argue that the time-to-contact between the attacker and the defender may yield information about future pass possibilities. Additionally, the informational fields constraining attacker–defender interaction may be viewed as a convergent channeling of possibilities towards a single pass solution.
Resumo:
A simple V-band radio IQ receiver architecture based around a six-port monolithic microwave integrated circuit (MMIC) is presented. The receiver assembly is designed to cover the 57-65 GHz broadband wireless communication system frequency allocation. The receiver that has an integral 10 dB microstrip antenna consumes 120 mW of dc power and occupies an area of 23 mm x 16 mm. The receiver can be used in heterodyne or in homodyne mode and has the capacity to demodulate quadrature amplitude modulation (QAM), binary phase shift keying (BPSK)/quadrature phase shift keying (QPSK)/offset quadrature phase shift keying (OQPSK). At 60 GHz the receiver can operate over 10 m range for transmitter effective isotropic radiated power (EIRP) of 20 dBm.
Resumo:
MALDI (matrix-assisted laser desorption/ionization) is one of the most important techniques used to produce large biomolecular ions in the gas phase. Surprisingly, the exact ionization mechanism is still not well understood and absolute values for the ion yields are scarce. This is in part due to the unknown efficiencies of typical detectors, especially for heavy biomolecular ions. As an alternative, charged particles can be non-destructively detected using an image-charge detector where the output voltage signal is proportional to the total charge within the device. In this paper, we report an absolute calibration which provides the voltage output per detected electronic charge in our experimental arrangement. A minimum of 3 x 10(3) ions were required to distinguish the signal above background noise in a single pass through the device, which could be further reduced using filtering techniques. The calibration results have been applied to raw MALDI spectra to measure absolute ion yields of both matrix and analyte ions.
Resumo:
It is noted that the determination of an oscillation frequency by used of the power spectrum of measured time series is susceptible to filtering of the signal. Similarly, frequency measurements made by period counting can yield different, results depending on how the signal is filtered for noise reduction. In an attempt to eliminate these ambiguities, a new measure of frequency, based on an approximate reconstruction of the phase-space trajectory of the oscillator from the signal, is introduced. This measure is shown to be invariant under linear filtering. For this reason, it is also inaccessible by spectral methods. The effect of filtering on frequency for weakly nonlinear, noisy oscillators, to which this definition applies only imperfectly, is quantified. This work provides the theoretical basis for frequency measurements employing MIRVA filtering.