964 resultados para Baghdad Railway.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Significant wheel-rail dynamic forces occur because of imperfections in the wheels and/or rail. One of the key responses to the transmission of these forces down through the track is impact force on the sleepers. Dynamic analysis of nonlinear systems is very complicated and does not lend itself easily to a classical solution of multiple equations. Trying to deduce the behaviour of track components from experimental data is very difficult because such data is hard to obtain and applies to only the particular conditions of the track being tested. The finite element method can be the best solution to this dilemma. This paper describes a finite element model using the software package ANSYS for various sized flat defects in the tread of a wheel rolling at a typical speed on heavy haul track. The paper explores the dynamic response of a prestressed concrete sleeper to these defects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite opposition from environmentalists, farmers and parts of the fishing industry, on 23 August 2012, the $6.4bn Alpha Coal mine and rail project in Queensland was approved under the EPBC Act, subject to 19 conditions.1 The approval relates to the proposed construction and operation of an open-cut coal mine and 495km railway line to Abbott Point...

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we propose an approach which attempts to solve the problem of surveillance event detection, assuming that we know the definition of the events. To facilitate the discussion, we first define two concepts. The event of interest refers to the event that the user requests the system to detect; and the background activities are any other events in the video corpus. This is an unsolved problem due to many factors as listed below: 1) Occlusions and clustering: The surveillance scenes which are of significant interest at locations such as airports, railway stations, shopping centers are often crowded, where occlusions and clustering of people are frequently encountered. This significantly affects the feature extraction step, and for instance, trajectories generated by object tracking algorithms are usually not robust under such a situation. 2) The requirement for real time detection: The system should process the video fast enough in both of the feature extraction and the detection step to facilitate real time operation. 3) Massive size of the training data set: Suppose there is an event that lasts for 1 minute in a video with a frame rate of 25fps, the number of frames for this events is 60X25 = 1500. If we want to have a training data set with many positive instances of the event, the video is likely to be very large in size (i.e. hundreds of thousands of frames or more). How to handle such a large data set is a problem frequently encountered in this application. 4) Difficulty in separating the event of interest from background activities: The events of interest often co-exist with a set of background activities. Temporal groundtruth typically very ambiguous, as it does not distinguish the event of interest from a wide range of co-existing background activities. However, it is not practical to annotate the locations of the events in large amounts of video data. This problem becomes more serious in the detection of multi-agent interactions, since the location of these events can often not be constrained to within a bounding box. 5) Challenges in determining the temporal boundaries of the events: An event can occur at any arbitrary time with an arbitrary duration. The temporal segmentation of events is difficult and ambiguous, and also affected by other factors such as occlusions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Low-cost level crossings are often criticized as being unsafe. Does a SIL (safety integrity level) rating make the railway crossing any safer? This paper discusses how a supporting argument might be made for low-cost level crossing warning devices with lower levels of safety integrity and issues such as risk tolerability and derivation of tolerable hazard rates for system-level hazards. As part of the design of such systems according to fail-safe principles, the paper considers the assumptions around the pre-defined safe states of existing warning devices and how human factors issues around such states can give rise to additional hazards.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The scarcity of large parcels of land in well-serviced areas is one motivator for redeveloping industrial or commercial property that is abandoned or underused and often environmentally contaminated – so-called brownfield land. Poor industrial waste disposal practices caused by industrial activities including gas works, factories, railway land and waste tips have contributed to many instances of contaminated land identified as brownfield sites. It is estimated there are between 10,000 and 160,000 brownfield sites in Australia, with Queensland accounting for around 4000 of these.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Scarcity of large parcels of land in well-serviced areas has motivated people to re-develop brownfield land. Most of brownfield land has high risk of contamination from wide range of industrial activities such as gas works, factories, railway land and waste tips. In addition, people who live in brownfield re-development areas may be exposed to health hazards. This paper discusses public perceptions on the brownfield sites and also the risk and mitigation strategy to promote brownfield re-development. Data is gathered from face to face survey of fifty respondents who work in Brisbane Central Business District (CBD) and interview with an expert on remediation of contaminated land. From this preliminary study, it is found that majority of the population are not aware of any brownfield sites near their residence and those who are aware showed very little concern on their proximity to the site. Further discussion on the paper based on a simple cross tabulation analysis. The main risk mitigation strategy of re-development of brownfield site is by updating the registration through Environmental Management Register (EMR) and Contaminated Land Register (CLR). In addition, insurance may offer to cover cost overruns on remediation cost.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The 2011 floods in Southeast Queensland had a devastating impact on many sectors including transport. Road and rail systems across all flooded areas of Queensland were severely affected and significant economic losses occurred as a result of roadway and railway closures. Travellers were compelled to take alternative routes because of road closures or deteriorated traffic conditions on their regular route. Extreme changes in traffic volume can occur under such scenarios which disrupts the network re-equilibrium and re-stabilisation in the recovery phase as travellers continuously adjust their travel options. This study explores how travellers respond to such a major network disruption. A comprehensive study was undertaken focusing on how bus riders reacted to the floods in Southeast Queensland by comparing the ridership patterns before, during and after the floods. The study outcomes revealed the evolving reactions of transit users to direct and indirect impacts of a natural disaster. A good understanding of this process is crucial for developing appropriate strategies to encourage modal shift of automobile users to public transit and also for modelling of travel behaviours during and after a major network disruption caused by natural disasters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Proper functioning of Insulated Rail Joints (IRJs) is essential for the safe operation of the railway signalling systems and broken rail identification circuitries. The Conventional IRJ (CIRJ) resembles structural butt joints consisting of two pieces of rails connected together through two joint bars on either side of their web and the assembly is held together through pre-tensioned bolts. As the IRJs should maintain electrical insulation between the two rails, a gap between the rail ends must be retained at all times and all metal contacting surfaces should be electrically isolated from each other using non-conductive material. At the gap, the rail ends lose longitudinal continuity and hence the vertical sections of the rail ends are often severely damaged, especially at the railhead, due to the passage of wheels compared to other continuously welded rail sections. Fundamentally, the reason for the severe damage can be related to the singularities of the wheel-rail contact pressure and the railhead stress. No new generation designs that have emerged in the market to date have focussed on this fundamental; they only have provided attention to either the higher strength materials or the thickness of the sections of various components of the IRJs. In this thesis a novel method of shape optimisation of the railhead is developed to eliminate the pressure and stress singularities through changes to the original sharp corner shaped railhead into an arc profile in the longitudinal direction. The optimal shape of the longitudinal railhead profile has been determined using three nongradient methods in search of accuracy and efficiency: (1) Grid Search Method; (2) Genetic Algorithm Method and (3) Hybrid Genetic Algorithm Method. All these methods have been coupled with a parametric finite element formulation for the evaluation of the objective function for each iteration or generation depending on the search algorithm employed. The optimal shape derived from these optimisation methods is termed as Stress Minimised Railhead (SMRH) in this thesis. This optimal SMRH design has exhibited significantly reduced stress concentration that remains well below the yield strength of the head hardened rail steels and has shifted the stress concentration location away from the critical zone of the railhead end. The reduction in the magnitude and the relocation of the stress concentration in the SMRH design has been validated through a full scale wheel – railhead interaction test rig; Railhead strains under the loaded wheels have been recorded using a non-contact digital image correlation method. Experimental study has confirmed the accuracy of the numerical predications. Although the SMRH shaped IRJs eliminate stress singularities, they can still fail due to joint bar or bolt hole cracking; therefore, another conceptual design, termed as Embedded IRJ (EIRJ) in this thesis, with no joint bars and pre-tensioned bolts has been developed using a multi-objective optimisation formulation based on the coupled genetic algorithm – parametric finite element method. To achieve the required structural stiffness for the safe passage of the loaded wheels, the rails were embedded into the concrete of the post tensioned sleepers; the optimal solutions for the design of the EIRJ is shown to simplify the design through the elimination of the complex interactions and failure modes of the various structural components of the CIRJ. The practical applicability of the optimal shapes SMRH and EIRJ is demonstrated through two illustrative examples, termed as improved designs (IMD1 & IMD2) in this thesis; IMD1 is a combination of the CIRJ and the SMRH designs, whilst IMD2 is a combination of the EIRJ and SMRH designs. These two improved designs have been simulated for two key operating (speed and wagon load) and design (wheel diameter) parameters that affect the wheel-rail contact; the effect of these parameters has been found to be negligible to the performance of the two improved designs and the improved designs are in turn found far superior to the current designs of the CIRJs in terms of stress singularities and deformation under the passage of the loaded wheels. Therefore, these improved designs are expected to provide longer service life in relation to the CIRJs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Numerous Abaqus [1] finite element analyses have been carried out using various plasticity models to investigate the effect of friction force on the rail head in relation to both the development of the accumulated plastic strain (PEEQ) and the changes in the depth of PEEQ distribution in the wheel-rail contact. The normal force distribution on the rail head was assumed to be Hertzian. The tangential force was implemented as a fraction of the normal force in the subroutine. Each analysis was carried out for a single pass and the effect of various friction coefficient values has been observed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A technique for analysing exhaust emission plumes from unmodified locomotives under real world conditions is described and applied to the task of characterizing plumes from railway trains servicing an Australian shipping port. The method utilizes the simultaneous measurement, downwind of the railway line, of the following pollutants; particle number, PM2.5 mass fraction, SO2, NOx and CO2, with the last of these being used as an indicator of fuel combustion. Emission factors are then derived, in terms of number of particles and mass of pollutant emitted per unit mass of fuel consumed. Particle number size distributions are also presented. The practical advantages of the method are discussed including the capacity to routinely collect emission factor data for passing trains and to thereby build up a comprehensive real world database for a wide range of pollutants. Samples from 56 train movements were collected, analyzed and presented. The quantitative results for emission factors are: EF(N)=(1.7±1)×1016 kg-1, EF(PM2.5)= (1.1±0.5) g·kg-1, EF(NOx)= (28±14) g·kg-1, and EF(SO2 )= (1.4±0.4) g·kg-1. The findings are compared with comparable previously published work. Statistically significant (p<α, α=0.05) correlations within the group of locomotives sampled were found between the emission factors for particle number and both SO2 and NOx.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rail operators recognize a need to increase ridership in order to improve the economic viability of rail service, and to magnify the role that rail travel plays in making cities feel liveable. This study extends previous research that used cluster analysis with a small sample of rail passengers to identify five salient perspectives of rail access (Zuniga et al, 2013). In this project stage, we used correlation techniques to determine how those perspectives would resonate with two larger study populations, including a relatively homogeneous sample of university students in Brisbane, Australia and a diverse sample of rail passengers in Melbourne, Australia. Findings from Zuniga et al. (2013) described a complex typology of current passengers that was based on respondents’ subjective attitudes and perceptions rather than socio-demographic or travel behaviour characteristics commonly used for segmentation analysis. The typology included five qualitative perspectives of rail travel. Based on the transport accessibility literature, we expected to find that perspectives from that study emphasizing physical access to rail stations would be shared by current and potential rail passengers who live further from rail stations. Other perspectives might be shared among respondents who live nearby, since the relevance of distance would be diminished. The population living nearby would thus represent an important target group for increasing ridership, since making rail travel accessible to them does not require expansion of costly infrastructure such as new lines or stations. By measuring the prevalence of each perspective in a larger respondent pool, results from this study provide insight into the typical socio-demographic and travel behaviour characteristics that correspond to each perspective of intra-urban rail travel. In several instances, our quantitative findings reinforced Zuniga et al.’s (2013) qualitative descriptions of passenger types, further validating the original research. This work may directly inform rail operators’ approach to increasing ridership through marketing and improvements to service quality and station experience. Operators in other parts of Australia and internationally may also choose to replicate the study locally, to fine-tune understanding of diverse customer bases. Developing regional and international collaboration would provide additional opportunities to evaluate and benchmark service and station amenities as they address the various access dimensions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Improving safety at rail level crossings is an important part of both road and rail safety strategies. While low in number, crashes between vehicles and trains at level crossings are catastrophic events typically involving multiple fatalities and serious injuries. Advances in driving assessment methods, such as the provision of on-road instrumented test vehicles with eye and head tracking, provide researchers with the opportunity to further understand driver behaviour at such crossings in ways not previously possible. This paper describes a study conducted to further understand the factors that shape driver behaviour at rail level crossings using instrumented vehicles. Twenty-two participants drove an On-Road Test Vehicle (ORTeV) on a predefined route in regional Victoria with a mix of both active (flashing lights with/without boom barriers) and passively controlled (stop, give way) crossings. Data collected included driving performance data, head checks, and interview data to capture driver strategies. The data from an integrated suite of methods demonstrated clearly how behaviour differs at active and passive level crossings, particularly for inexperienced drivers. For example, the head check data clearly show the reliance and expectancies of inexperienced drivers for active warnings even when approaching passively controlled crossings. These studies provide very novel and unique insights into how level crossing design and warnings shape driver behaviour.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Railway is one of the most important, reliable and widely used means of transportation, carrying freight, passengers, minerals, grains, etc. Thus, research on railway tracks is extremely important for the development of railway engineering and technologies. The safe operation of a railway track is based on the railway track structure that includes rails, fasteners, pads, sleepers, ballast, subballast and formation. Sleepers are very important components of the entire structure and may be made of timber, concrete, steel or synthetic materials. Concrete sleepers were first installed around the middle of last century and currently are installed in great numbers around the world. Consequently, the design of concrete sleepers has a direct impact on the safe operation of railways. The "permissible stress" method is currently most commonly used to design sleepers. However, the permissible stress principle does not consider the ultimate strength of materials, probabilities of actual loads, and the risks associated with failure, all of which could lead to the conclusion of cost-ineffectiveness and over design of current prestressed concrete sleepers. Recently the limit states design method, which appeared in the last century and has been already applied in the design of buildings, bridges, etc, is proposed as a better method for the design of prestressed concrete sleepers. The limit states design has significant advantages compared to the permissible stress design, such as the utilisation of the full strength of the member, and a rational analysis of the probabilities related to sleeper strength and applied loads. This research aims to apply the ultimate limit states design to the prestressed concrete sleeper, namely to obtain the load factors of both static and dynamic loads for the ultimate limit states design equations. However, the sleepers in rail tracks require different safety levels for different types of tracks, which mean the different types of tracks have different load factors of limit states design equations. Therefore, the core tasks of this research are to find the load factors of the static component and dynamic component of loads on track and the strength reduction factor of the sleeper bending strength for the ultimate limit states design equations for four main types of tracks, i.e., heavy haul, freight, medium speed passenger and high speed passenger tracks. To find those factors, the multiple samples of static loads, dynamic loads and their distributions are needed. In the four types of tracks, the heavy haul track has the measured data from Braeside Line (A heavy haul line in Central Queensland), and the distributions of both static and dynamic loads can be found from these data. The other three types of tracks have no measured data from sites and the experimental data are hardly available. In order to generate the data samples and obtain their distributions, the computer based simulations were employed and assumed the wheel-track impacts as induced by different sizes of wheel flats. A valid simulation package named DTrack was firstly employed to generate the dynamic loads for the freight and medium speed passenger tracks. However, DTrack is only valid for the tracks which carry low or medium speed vehicles. Therefore, a 3-D finite element (FE) model was then established for the wheel-track impact analysis of the high speed track. This FE model has been validated by comparing its simulation results with the DTrack simulation results, and with the results from traditional theoretical calculations based on the case of heavy haul track. Furthermore, the dynamic load data of the high speed track were obtained from the FE model and the distributions of both static and dynamic loads were extracted accordingly. All derived distributions of loads were fitted by appropriate functions. Through extrapolating those distributions, the important parameters of distributions for the static load induced sleeper bending moment and the extreme wheel-rail impact force induced sleeper dynamic bending moments and finally, the load factors, were obtained. Eventually, the load factors were obtained by the limit states design calibration based on reliability analyses with the derived distributions. After that, a sensitivity analysis was performed and the reliability of the achieved limit states design equations was confirmed. It has been found that the limit states design can be effectively applied to railway concrete sleepers. This research significantly contributes to railway engineering and the track safety area. It helps to decrease the failure and risks of track structure and accidents; better determines the load range for existing sleepers in track; better rates the strength of concrete sleepers to support bigger impact and loads on railway track; increases the reliability of the concrete sleepers and hugely saves investments on railway industries. Based on this research, many other bodies of research can be promoted in the future. Firstly, it has been found that the 3-D FE model is suitable for the study of track loadings and track structure vibrations. Secondly, the equations for serviceability and damageability limit states can be developed based on the concepts of limit states design equations of concrete sleepers obtained in this research, which are for the ultimate limit states.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Driver behaviour at rail level crossings represents a key area for further research. This paper describes an on-road study comparing novice and experienced driver situation awareness at rural rail level crossings. Participants provided verbal protocols while driving a pre-determined rural route incorporating ten rail level crossings. Driver situation awareness was assessed using a network analysis approach. The analysis revealed key differences between novice and experienced drivers' situation awareness. In particular, the novice drivers seemed to be more reliant on rail level crossing warnings and their situation awareness was less focussed on the environment outside of the rail level crossing. In closing, the implications for rail level crossing safety are discussed.