910 resultados para BORON OXIDES
Resumo:
Dark green spherules occur in the lower part of a turbidite in Section 603B-22-3, at the 70 cm level. In all probability these spherules originally consisted of massive glass, but now appear to have become completely altered into smectite. The presence of numerous microscopic fissures in the spherules probably mediated in the alteration process. Judging by the presence of similar spherules at the Cretaceous/Tertiary (K/T) boundary in DSDP Hole 390B, the green spherules are thought to represent diagenetically altered impact ejecta from one large or several smaller extraterrestrial objects at the end of the Cretaceous. The presence of anomalously high concentrations of Ni, Co, and As higher up in the turbidite are in agreement with an expected enrichment of these elements in the K/T boundary clay. However, precise Ir analyses are necessary in order to confirm this.
Resumo:
A suite of conjugate pore fluid and sediment samples were collected during Leg 169 of the ODP from within the clastic sedimentary sequences which host massive sulphides at Central Hill, Escanaba Trough (ODP Site 1038). We report the alkali element and boron, and Li and B isotope data for these samples. Relative to a reference site (Site 1037) located outside the zone of high heat flow, pore fluids from Site 1038 show a wide variation in Cl (300-800 mM), and have far higher concentrations of Li (up to 6.2 mM), B (up to 9.7 mM), Cs (up to 5.0 mM), and Rb (up to 97 mM). We show that the pore fluids are derived from hydrothermal circulation that has extended into the basement oceanic crust, with input of the alkali elements and B as the rising hydrothermal fluids interact geochemically with the overlying clastic sediments. There is, however, no marked depletion of these elements in the conjugate sediments, suggesting that there has been advective transport of fluids away from the primary hydrothermal reaction site. This is supported by modelling of the Li and B isotope systematics of the pore fluids, which shows that they record extensive formation of secondary minerals during cooling of the fluids from ~350 to ~20ºC. Precipitation of metal-rich sulphides would have occurred prior to the formation of these minerals, thus, the pore fluid Li and B isotope data can place important constraints on the locus of sulphide deposition beneath the seafloor at Escanaba.
Resumo:
Middle Miocene to Holocene fine-grained argillaceous sediments (clays, claystones/muds, and mudstones), which volumetrically dominated the sediment recovery in the Woodlark Basin during Leg 180, were chemically analyzed for major elements, trace elements, and some rare earth elements by X-ray fluorescence. Selected samples also underwent X-ray diffraction (XRD) analysis for mineral determination. The results shed light on sediment provenance when combined with shipboard sediment descriptions, smear slide study, and XRD. The oldest sediments recovered (Site 1108) of middle-late Miocene age include volcanogenic muds with distinctive high MgO and K2O, indicative of a relatively basic calc-alkaline source related to an inferred Miocene forearc succession. The forearc basement, composed of diabase and basalt, was locally exposed (Site 1109) and eroded in the late Miocene (<5.4-9.93 Ma), giving rise to fluvial conglomerates (Sites 1109, 1115, and 1118). Chemically distinctive fine-grained claystones and siltstones (with relatively high Ti, low K) are compatible with derivation from tropically weathered basic igneous rocks, correlated with the Paleogene Papuan ophiolite. Overlying latest Miocene-Pleistocene fine-grained sediments throughout the Woodlark Basin were partly derived from calc-alkaline volcanic sources. However, relatively high abundances of Al2O3 and related element oxides (K2O and Na2O) and trace elements (e.g., Rb and Y) reflect an additional terrigenous input throughout the basin, correlated with pelitic metamorphic rocks exposed on Papua New Guinea and adjacent areas. In addition, sporadic high abundances of Cr and Ni, some other trace metals, and related minerals (talc, crysotile, and chlorite) reflect input from an ophiolitic terrain dominated by ultramafic rocks, correlated with the Paleogene Papuan ophiolite. The source areas possibly included serpentinized ultramafic ophiolitic rocks exposed in the Papua New Guinea interior highlands. Chemical evidence further indicates that fine-grained terrigenous sediment reached the Woodlark Basin throughout its entire late Miocene-Holocene history. Distinctive high-K volcanogenic muds rich in tephra and volcanic ash layers that appear at <2.3 Ma (Sites 1109 and 1115) are indicative of high-K calc-alkaline volcanic centers, possibly located in the Dawson Strait, Moresby Strait, or Dobu Seamount area. Chemical diagenesis of fine-grained sediments within the Woodlark Basin is reflected in clay neomorphism and localized formation of minerals including dolomite, ankerite, and zeolite but has had little effect on the bulk chemical composition of most samples.
Resumo:
We provide new insights into the geochemistry of serpentinites from mid-ocean ridges (Mid-Atlantic Ridge and Hess Deep), passive margins (Iberia Abyssal Plain and Newfoundland) and fore-arcs (Mariana and Guatemala) based on bulk-rock and in situ mineral major and trace element compositional data collected on drill cores from the Deep Sea Drilling Project and Ocean Drilling Program. These data are important for constraining the serpentinite-hosted trace element inventory of subduction zones. Bulk serpentinites show up to several orders of magnitude enrichments in Cl, B, Sr, U, Sb, Pb, Rb, Cs and Li relative to elements of similar compatibility during mantle melting, which correspond to the highest primitive mantle-normalized B/Nb, B/Th, U/Th, Sb/Ce, Sr/Nd and Li/Y among subducted lithologies of the oceanic lithosphere (serpentinites, sediments and altered igneous oceanic crust). Among the elements showing relative enrichment, Cl and B are by far the most abundant with bulk concentrations mostly above 1000 µg/g and 30 µg/g, respectively. All other trace elements showing relative enrichments are generally present in low concentrations (µg/g level), except Sr in carbonate-bearing serpentinites (thousands of µg/g). In situ data indicate that concentrations of Cl, B, Sr, U, Sb, Rb and Cs are, and that of Li can be, increased by serpentinization. These elements are largely hosted in serpentine (lizardite and chrysotile, but not antigorite). Aragonite precipitation leads to significant enrichments in Sr, U and B, whereas calcite is important only as an Sr host. Commonly observed brucite is trace element-poor. The overall enrichment patterns are comparable among serpentinites from mid-ocean ridges, passive margins and fore-arcs, whereas the extents of enrichments are often specific to the geodynamic setting. Variability in relative trace element enrichments within a specific setting (and locality) can be several orders of magnitude. Mid-ocean ridge serpentinites often show pronounced bulk-rock U enrichment in addition to ubiquitous Cl, B and Sr enrichment. They also exhibit positive Eu anomalies on chondrite-normalized rare earth element plots. Passive margin serpentinites tend to have higher overall incompatible trace element contents than mid-ocean ridge and fore-arc serpentinites and show the highest B enrichment among all the studied serpentinites. Fore-arc serpentinites are characterized by low overall trace element contents and show the lowest Cl, but the highest Rb, Cs and Sr enrichments. Based on our data, subducted dehydrating serpentinites are likely to release fluids with high B/Nb, B/Th, U/Th, Sb/Ce and Sr/Nd, rendering them one of the potential sources of some of the characteristic trace element fingerprints of arc magmas (e.g. high B/Nb, high Sr/Nd, high Sb/Ce). However, although serpentinites are a substantial part of global subduction zone chemical cycling, owing to their low overall trace element contents (except for B and Cl) their geochemical imprint on arc magma sources (apart from addition of H2O, B and Cl) can be masked considerably by the trace element signal from subducted crustal components.
Resumo:
Culture experiments with living planktic foraminifers reveal that the ratio of boron to calcium (B/Ca) in Orbulina universa increases from 56 to 92 µmol mol-1 when pH is raised from 7.61 +/- 0.02 to 8.67 +/- 0.03 (total scale). Across this pH range, the abundances of carbonate, bicarbonate, and borate ions also change (+ 530, - 500, and + 170 µmol kg-1, respectively). Thus specific carbonate system control(s) on B/Ca remain unclear, complicating interpretation of paleorecords. B/Ca in cultured O. universa also increases with salinity (55-72 µmol mol-1 from 29.9-35.4 per mil) and seawater boron concentration (62-899 µmol mol-1 from 4-40 ppm B), suggesting that these parameters may need to be taken into account for paleorecords spanning large salinity changes (~ 2 per mil) and for samples grown in seawater whose boron concentration ([B]SW) differs from modern by more than 0.25 ppm. While our results are consistent with the predominant incorporation of the charged borate species B(OH)4 into foraminiferal calcite, the behavior of the partition coefficient KD (defined as [B/Ca]calcite/B(OH)4/HCO3seawater) cannot be explained by borate incorporation alone, and suggests the involvement of other pH-sensitive ions such as CO3 For a given increase in seawater B(OH)4, the corresponding increase in B/Ca is stronger when B(OH)4 is raised by increasing [B]SW than when it is raised by increasing pH. These results suggest that B incorporation controls should be reconsidered. Additional insight is gained from laser-ablation ICP-MS profiles, which reveal variable B/Ca distributions within individual shells.
Resumo:
The Zambezi deep-sea fan, the largest of its kind along the east African continental margin, is poorly studied to date, despite its potential to record marine and terrestrial climate signals in the southwest Indian Ocean. Therefore, gravity core GeoB 9309-1, retrieved from 1219 m water depth, was investigated for various geophysical (magnetic susceptibility, porosity, colour reflectance) and geochemical (pore water and sediment geochemistry, Fe and P speciation) properties. Onboard and onshore data documented a sulphate/methane transition (SMT) zone at ~ 450-530 cm sediment depth, where the simultaneous consumption of pore water sulphate and methane liberates hydrogen sulphide and bi-carbonate into the pore space. This leads to characteristic changes in the sediment and pore water chemistry, as the reduction of primary Fe (oxyhydr)oxides, the precipitation of Fe sulphides, and the mobilization of Fe (oxyhydr)oxide-bound P. These chemical processes also lead to a marked decrease in magnetic susceptibility. Below the SMT, we find a reduction of porosity, possibly due to pore space cementation by authigenic minerals. Formation of the observed geochemical, magnetic and mineralogical patterns requires a fixation of the SMT at this distinct sediment depth for a considerable time-which we calculated to be ~ 10 000 years assuming steady-state conditions-following a period of rapid upward migration towards this interval. We postulate that the worldwide sea-level rise at the last glacial/interglacial transition (~ 10 000 years B.P.) most probably caused the fixation of the SMT at its present position, through drastically reduced sediment delivery to the deep-sea fan. In addition, we report an internal redistribution of P occurring around the SMT, closely linked to the (de)coupling of sedimentary Fe and P, and leaving a characteristic pattern in the solid P record. By phosphate re-adsorption onto Fe (oxyhydr)oxides above, and formation of authigenic P minerals (e.g. vivianite) below the SMT, deep-sea fan deposits may potentially act as long-term sinks for P.
Resumo:
d11B and trace results obtained for a deep sea coral specimen Madrepora oculata collected from the Norwegian Sea (67°N, 9°E, 340 m) during the RV Polarstern ARK/II/Ia cruise (2007). Such coral specimen grew during the last four decades (1968-2007) and geochemical results highligh a seawater pH decrease with an order of magnitude in good agreement with an ocean acidification rate today known. This pH record is strongly impacted by inter-decadal change of ocean dynamic (NAO) and productivity. pHT calculation parameters (Hönisch et al., 2007): a=5; a=0.9804, d11B=39.5 PER MIL, Li/Mg temperature, salinity=35.1, pKB from Dickson (1990).
Resumo:
Products of two mud volcanoes from the distal part of the Mediterranean Ridge accretionary complex have been investigated regarding their B, C, and O stable isotope signatures. The mud breccias have been divided into mud matrix, lithified clasts, biogenic deposits, and authigenic cements and crusts related to fluid flow and cementation. Isotope geochemistry is used to evaluate the depth of mobilization of each phase in the subduction zone. B contents and isotope ratios of the mud and mud clasts show a general trend of B enrichment and decreasing d11B values with increasing consolidation (i.e., depth). However, the majority of the clast and matrix samples relate to moderate depths of mobilization within the wedge (1-2 km below seafloor). The carbonate cements of most of these clasts as well as the authigenic crusts, however, provide evidence for a deep fluid influence, probably associated with the décollement at 5-6 km depth. This interpretation is supported by d13C ratios of the crust, which indicate precipitation of C from thermogenic methane, and by the d11B ratios of pore-water samples of mud-breccia drill cores. Clams (Vesicomya sp.) living adjacent to fluid vents have d11B and d18O values corresponding to brines known in the area, which acted as the parent solution for shell precipitation. Such brines are most likely Miocene pore waters trapped at deep levels within the backstop to the accretionary prism, probably prior to desiccation of the Mediterranean in the Messinian (6-5 Ma). Combining all results, deep fluid circulation and expulsion are identified as the main processes triggering mud liquefaction and extrusion, whereas brines contribute only locally. Given the high B contents, mud extrusion has to be considered a major backflux mechanism of B into the hydrosphere.
Resumo:
Ocean Drilling Program (ODP) Site 1151 (Sacks, Suyehiro, Acton, et al., 2000, doi:10.2973/odp.proc.ir.186.2000) is located in an area where the surface water mass is influenced by both the Kuroshio and Oyashio Currents. The site also receives a relatively high flux of detrital materials from riverine input from Honsyu Island and eolian input from Central and East Asia. We analyzed alkenones and alkenoates in the sediments to reconstruct alkenone unsaturation index (Uk'37)-based sea-surface temperature (SST), total organic carbon, and total nitrogen to estimate the terrigenous contribution by the C/N ratio during the last glacial-interglacial cycle. The major elements were also analyzed to examine the variation in terrigenous composition.
Resumo:
Boron isotope patterns preserved in cap carbonates deposited in the aftermath of the younger Cryogenian (Marinoan, ca. 635 Ma) glaciation confirm a temporary ocean acidification event on the continental margin of the southern Congo craton, Namibia. To test the significance of this acidification event and reconstruct Earth's global seawater pH states at the Cryogenian-Ediacaran transition, we present a new boron isotope data set recorded in cap carbonates deposited on the Yangtze Platform in south China and on the Karatau microcontinent in Kazakhstan. Our compiled d11B data reveal similar ocean pH patterns for all investigated cratons and confirm the presence of a global and synchronous ocean acidification event during the Marinoan deglacial period, compatible with elevated postglacial pCO2 concentrations. Differences in the details of the ocean acidification event point to regional distinctions in the buffering capacity of Ediacaran seawater.
Resumo:
Serpentinite clasts and muds erupted from Conical Seamount, Mariana forearc, show substantial enrichment in boron (B) and 11B (delta11B up to +15?) relative to mantle values. These elevated B isotope signatures result from chemical exchange with B-rich pore fluids that are upwelling through the seamount. If the trends of decreasing delta11B with slab depth shown by cross-arc magmatic suites in the Izu and Kurile arcs of the western Pacific are extended to shallow depths (~25 km), they intersect the inferred delta11B of the slab-derived fluids (+13x) at Conical Seamount. Simple mixtures of a B-rich fluid with a high delta11B and B-poor mantle with a low delta11B are insufficient to explain the combined forearc and arc data sets. The B isotope systematics of subduction-related rocks thus indicate that the fluids evolved from downgoing slabs are more enriched in 11B than the slab materials from which they originate. Progressively lower delta11B in arc lavas erupted above deep slabs reflects both the progressive depletion of 11B from the slab and progressively greater inputs of mantle-derived B. This suggests that the slab releases 11B-enriched fluids from the shallowest levels to depths greater than 200 km.
Resumo:
In the South Atlantic, at Sites 519 to 523, the dissolution of calcareous oozes ended in the formation of red clays rich in iron and manganese. The early authigenesis of manganese oxides and clays is described in Miocene marly calcareous oozes. The mineralogical and geochemical influences of basaltic basement weathering are shown by the occurrence of palagonite, authigenic clays, and oxides in the basal sediments. The development of red clay facies can be inhibited by local topographic and paleoceanographic changes, as at Site 520.