981 resultados para BASIS-SET CONVERGENCE
Resumo:
The multifaceted passive present participle in Finnish This study investigates the uses of the passive present participle in Finnish. The participle occurs in a variety of syntactic environments and exhibits a rich polysemy. Former descriptions have treated it as a mainly modal element, but it has several non-modal uses as well. The present study provides an overview of its uses and meanings, with the main focus on the factors which trigger the modal reading. In addition, the study contains two case studies on modal periphrastic constructions consisting of the verb 'to be' and the present passive participle, the Obligation construction, e.g., on men-tä-vä [is go-pass-ptc], and the Possiblity construction, e.g., on pelaste-tta-v-i-ssa [is save-pass-ptc-pl-ine]. The study is based on empirical data of 9000 sentences obtained from i) large collections of transcribed material from Finnish dialects, ii) a corpus of modern Finnish newspaper texts, iii) corpora of Old Finnish texts. Both in colloquial and standard Finnish the reading of the participle is highly dependent of the context and determined by such factors as the overall syntactic environment and other co-occurring elements. One of the main findings here is that the Finnish passive present participle is not modal per se. The contextual modal reading arises whenever the state of affairs is conceptualized from the viewpoint of the implied subject of the participle, and the meaning of possibility or obligation depends mostly on whether the situation is pleasant or undesirable. In sections examining the grammaticalization of the Possibility and Obligation constructions, the perspective is diachronic. Both constructions have derived from copula constructions with the passive present participle as a predicate (adjective or adverb). These sections show how a linguistic change can be investigated on the basis of the patterns of usage in the empirical data. The Possibility construction is currently going through a restructuration to a passive verbal complex. The source of this construction is reflected in its present-day use by the fact that it heavily biased towards a small set of verbs. The Obligation construction has grammaticalized to a construction comparable to a compound tense. Patterns of use of the construction show that grammaticalization originates in specific syntactic constructions with an implication of practical necessity. Furthermore, it is shown that the Obligation construction has grammaticalized in different directions in standard and colloquial Finnish. Differing from the study on most typical phenomena investigated in the literature on grammaticalization of modality, the present study opens new perspectives and methods for discussion on these questions.
Resumo:
Our main result is a new sequential method for the design of decentralized control systems. Controller synthesis is conducted on a loop-by-loop basis, and at each step the designer obtains an explicit characterization of the class C of all compensators for the loop being closed that results in closed-loop system poles being in a specified closed region D of the s-plane, instead of merely stabilizing the closed-loop system. Since one of the primary goals of control system design is to satisfy basic performance requirements that are often directly related to closed-loop pole location (bandwidth, percentage overshoot, rise time, settling time), this approach immediately allows the designer to focus on other concerns such as robustness and sensitivity. By considering only compensators from class C and seeking the optimum member of that set with respect to sensitivity or robustness, the designer has a clearly-defined limited optimization problem to solve without concern for loss of performance. A solution to the decentralized tracking problem is also provided. This design approach has the attractive features of expandability, the use of only 'local models' for controller synthesis, and fault tolerance with respect to certain types of failure.
Resumo:
The Rv1625c Class III adenylyl cyclase from Mycobacterium tuberculosis is a homodimeric enzyme with two catalytic centers at the dimer interface, and shows sequence similarity with the mammalian adenylyl and guanylyl cyclases. Mutation of the substrate-specifying residues in the catalytic domain of Rv1625c, either independently or together, to those present in guanylyl cyclases not only failed to confer guanylyl cyclase activity to the protein, but also severely abrogated the adenylyl cyclase activity of the enzyme. Biochemical analysis revealed alterations in the behavior of the mutants on ion-exchange chromatography, indicating differences in the surface-exposed charge upon mutation of substrate-specifying residues. The mutant proteins showed alterations in oligomeric status as compared to the wild-type enzyme, and differing abilities to heterodimerize with the wild-type protein. The crystal structure of a mutant has been solved to a resolution of 2.7 angstrom. On the basis of the structure, and additional biochemical studies, we provide possible reasons for the altered properties of the mutant proteins, as well as highlight unique structural features of the Rv1625c adenylyl cyclase. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The problem of denoising damage indicator signals for improved operational health monitoring of systems is addressed by applying soft computing methods to design filters. Since measured data in operational settings is contaminated with noise and outliers, pattern recognition algorithms for fault detection and isolation can give false alarms. A direct approach to improving the fault detection and isolation is to remove noise and outliers from time series of measured data or damage indicators before performing fault detection and isolation. Many popular signal-processing approaches do not work well with damage indicator signals, which can contain sudden changes due to abrupt faults and non-Gaussian outliers. Signal-processing algorithms based on radial basis function (RBF) neural network and weighted recursive median (WRM) filters are explored for denoising simulated time series. The RBF neural network filter is developed using a K-means clustering algorithm and is much less computationally expensive to develop than feedforward neural networks trained using backpropagation. The nonlinear multimodal integer-programming problem of selecting optimal integer weights of the WRM filter is solved using genetic algorithm. Numerical results are obtained for helicopter rotor structural damage indicators based on simulated frequencies. Test signals consider low order polynomial growth of damage indicators with time to simulate gradual or incipient faults and step changes in the signal to simulate abrupt faults. Noise and outliers are added to the test signals. The WRM and RBF filters result in a noise reduction of 54 - 71 and 59 - 73% for the test signals considered in this study, respectively. Their performance is much better than the moving average FIR filter, which causes significant feature distortion and has poor outlier removal capabilities and shows the potential of soft computing methods for specific signal-processing applications. (C) 2005 Elsevier B. V. All rights reserved.
Resumo:
Background: Protein phosphorylation is a generic way to regulate signal transduction pathways in all kingdoms of life. In many organisms, it is achieved by the large family of Ser/Thr/Tyr protein kinases which are traditionally classified into groups and subfamilies on the basis of the amino acid sequence of their catalytic domains. Many protein kinases are multidomain in nature but the diversity of the accessory domains and their organization are usually not taken into account while classifying kinases into groups or subfamilies. Methodology: Here, we present an approach which considers amino acid sequences of complete gene products, in order to suggest refinements in sets of pre-classified sequences. The strategy is based on alignment-free similarity scores and iterative Area Under the Curve (AUC) computation. Similarity scores are computed by detecting common patterns between two sequences and scoring them using a substitution matrix, with a consistent normalization scheme. This allows us to handle full-length sequences, and implicitly takes into account domain diversity and domain shuffling. We quantitatively validate our approach on a subset of 212 human protein kinases. We then employ it on the complete repertoire of human protein kinases and suggest few qualitative refinements in the subfamily assignment stored in the KinG database, which is based on catalytic domains only. Based on our new measure, we delineate 37 cases of potential hybrid kinases: sequences for which classical classification based entirely on catalytic domains is inconsistent with the full-length similarity scores computed here, which implicitly consider multi-domain nature and regions outside the catalytic kinase domain. We also provide some examples of hybrid kinases of the protozoan parasite Entamoeba histolytica. Conclusions: The implicit consideration of multi-domain architectures is a valuable inclusion to complement other classification schemes. The proposed algorithm may also be employed to classify other families of enzymes with multidomain architecture.
Resumo:
The methods of secondary wood processing are assumed to evolve over time and to affect the requirements set for the wood material and its suppliers. The study aimed at analysing the industrial operating modes applied by joinery and furniture manufacturers as sawnwood users. Industrial operating mode was defined as a pattern of important decisions and actions taken by a company which describes the company's level of adjustment in the late-industrial transition. A non-probabilistic sample of 127 companies was interviewed, including companies from Denmark, Germany, the Netherlands, and Finland. Fifty-two of the firms were furniture manufacturers and the other 75 were producing windows and doors. Variables related to business philosophy, production operations, and supplier choice criteria were measured and used as a basis for a customer typology; variables related to wood usage and perceived sawmill performance were measured to be used to profile the customer types. Factor analysis was used to determine the latent dimensions of industrial operating mode. Canonical correlations analysis was applied in developing the final base for classifying the observations. Non-hierarchical cluster analysis was employed to build a five-group typology of secondary wood processing firms; these ranged from traditional mass producers to late-industrial flexible manufacturers. There is a clear connection between the amount of late-industrial elements in a company and the share of special and customised sawnwood it uses. Those joinery or furniture manufacturers that are more late-industrial also are likely to use more component-type wood material and to appreciate customer-oriented technical precision. The results show that the change is towards the use of late-industrial sawnwood materials and late-industrial supplier relationships.
Resumo:
The role of convergence feedback on the stability of a coupled ocean‐atmosphere system is studied using model III of Hirst (1986). It is shown that the unstable coupled mode found by Hirst is greatly modified by the convergence feedback. If the convergence feedback strength exceeds a critical value, several new unstable intraseasonal modes are also introduced. These modes have very weak dependence on the wave number. These results may explain the behaviour of some coupled models and to some extent provide a mechanism for the observed aperiodicity of the El‐Nino and Southern Oscillation (ENSO) events.
Resumo:
Basepair stacking calculations have been carried out to understand the conformational polymorphism of DNA and its sequence dependence. The recently developed self-consistent parameter set, which is specially suitable for describing irregular DNA structures, has been used to describe the geometry of a basepair doublet. While for basepairs without any propeller, the favourable stacking patterns do not appear to have very strong features, much more noticeable sequence dependent stacking patterns emerge once a propeller is applied to the basepairs. The absolute minima for most sequences occurs for a doublet geometry close to the B-DNA fibre models. Hence in the B-DNA region, no strong sequence dependent features are found, but the range of doublet geometries observed in the crystal structures generally lie within the low energy contours, obtained from stacking energy calculations. The doublet geometry corresponding to the A-DNA fibre model is not energetically favourable for the purine-pyrimidine sequences, which prefer small roll angle values when the slide has a large negative value as in A-DNA. However positive roll with large negative slide is allowed for GG, GA, AG and the pyrimidine-purine steps. This is consistent with the observed geometries of various steps in A-DNA crystals. Thus the general features of the basepair doublets predicted from these theoretical studies agree very well with the results from crystal structure analysis. However, since most sequences show an overall preference for B-type doublet geometry, the B --> A transition for random sequence DNA cannot be explained on the basis of basepair stacking interactions.
Resumo:
Some wild isolates of Neurospora show microcycle conidiation in liquid culture under continuous agitation. Macroconidia from agar-grown mycelial cultures germinated in liquid and the germlings spontaneously produced conidia with no intervening mycelial phase. Three types of microcycle conidiation were seen among progeny of N. crassa Vickramam A x N. crassa a wild-type: (1) multinucleate blastoconidia produced by apical budding and septation, (2) multinucleate arthroconidia produced by holothallic septation and disarticulation of cells, and (3) uninucleate microconidia produced directly from conidiogenous cells of the germlings. Two genes were identified which control specific patterns of microcycle conidiogenesis. A single gene mcb in linkage group VR near al-3 (3.2% recombination) controls blastoconidiation. This gene is epistatic to gene mcm located in linkage group IIL, very near ro-7 (1.4%). mcm controls both microconidiation and arthroconidiation depending on temperature. Strains of genotype mcm produce microconidia almost exclusively at 18-22 degrees C, but arthroconidia with few or no microconidia at 30 degrees C. Because they result in rapid and synchronized conidiation in liquid culture, the two genes should be useful for studies of developmental gene regulation. mcm makes it possible to obtain large quantities of pure microconidia rapidly for experimentation.
Resumo:
In this paper I will offer a novel understanding of a priori knowledge. My claim is that the sharp distinction that is usually made between a priori and a posteriori knowledge is groundless. It will be argued that a plausible understanding of a priori and a posteriori knowledge has to acknowledge that they are in a constant bootstrapping relationship. It is also crucial that we distinguish between a priori propositions that hold in the actual world and merely possible, non-actual a priori propositions, as we will see when considering cases like Euclidean geometry. Furthermore, contrary to what Kripke seems to suggest, a priori knowledge is intimately connected with metaphysical modality, indeed, grounded in it. The task of a priori reasoning, according to this account, is to delimit the space of metaphysically possible worlds in order for us to be able to determine what is actual.
Resumo:
We present a distributed algorithm that finds a maximal edge packing in O(Δ + log* W) synchronous communication rounds in a weighted graph, independent of the number of nodes in the network; here Δ is the maximum degree of the graph and W is the maximum weight. As a direct application, we have a distributed 2-approximation algorithm for minimum-weight vertex cover, with the same running time. We also show how to find an f-approximation of minimum-weight set cover in O(f2k2 + fk log* W) rounds; here k is the maximum size of a subset in the set cover instance, f is the maximum frequency of an element, and W is the maximum weight of a subset. The algorithms are deterministic, and they can be applied in anonymous networks.
Resumo:
The performance of the Advanced Regional Prediction System (ARPS) in simulating an extreme rainfall event is evaluated, and subsequently the physical mechanisms leading to its initiation and sustenance are explored. As a case study, the heavy precipitation event that led to 65 cm of rainfall accumulation in a span of around 6 h (1430 LT-2030 LT) over Santacruz (Mumbai, India), on 26 July, 2005, is selected. Three sets of numerical experiments have been conducted. The first set of experiments (EXP1) consisted of a four-member ensemble, and was carried out in an idealized mode with a model grid spacing of 1 km. In spite of the idealized framework, signatures of heavy rainfall were seen in two of the ensemble members. The second set (EXP2) consisted of a five-member ensemble, with a four-level one-way nested integration and grid spacing of 54, 18, 6 and 1 km. The model was able to simulate a realistic spatial structure with the 54, 18, and 6 km grids; however, with the 1 km grid, the simulations were dominated by the prescribed boundary conditions. The third and final set of experiments (EXP3) consisted of a five-member ensemble, with a four-level one-way nesting and grid spacing of 54, 18, 6, and 2 km. The Scaled Lagged Average Forecasting (SLAF) methodology was employed to construct the ensemble members. The model simulations in this case were closer to observations, as compared to EXP2. Specifically, among all experiments, the timing of maximum rainfall, the abrupt increase in rainfall intensities, which was a major feature of this event, and the rainfall intensities simulated in EXP3 (at 6 km resolution) were closest to observations. Analysis of the physical mechanisms causing the initiation and sustenance of the event reveals some interesting aspects. Deep convection was found to be initiated by mid-tropospheric convergence that extended to lower levels during the later stage. In addition, there was a high negative vertical gradient of equivalent potential temperature suggesting strong atmospheric instability prior to and during the occurrence of the event. Finally, the presence of a conducive vertical wind shear in the lower and mid-troposphere is thought to be one of the major factors influencing the longevity of the event.
Resumo:
A key problem in helicopter aeroelastic analysis is the enormous computational time required for a numerical solution of the nonlinear system of algebraic equations required for trim, particularly when free wake models are used. Trim requires calculation of the main rotor and tail rotor controls and the vehicle attitude which leads to the six steady forces and moments about the helicopter center of gravity to be zero. An appropriate initial estimate of the trim state is needed for successful helicopter trim. This study aims to determine the control inputs that can have considerable effect on the convergence of trim solution in the aeroelastic analysis of helicopter rotors by investigating the basin of attraction of the nonlinear equations (set of initial guess points from which the nonlinear equations converge). It is illustrated that the three main rotor pitch controls of collective pitch, longitudinal cyclic pitch and lateral cyclic pitch have a significant contribution to the convergence of the trim solution. Trajectories of the Newton iterates are shown and some ideas for accelerating the convergence of a trim solution in the aeroelastic analysis of helicopters are proposed. It is found that the basins of attraction can have fractal boundaries. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The finite predictability of the coupled ocean-atmosphere system is determined by its aperiodic variability. To gain insight regarding the predictability of such a system, a series of diagnostic studies has been carried out to investigate the role of convergence feedback in producing the aperiodic behavior of the standard version of the Cane-Zebiak model. In this model, an increase in sea surface temperature (SST) increases atmospheric heating by enhancing local evaporation (SST anomaly feedback) and low-level convergence (convergence feedback). The convergence feedback is a nonlinear function of the background mean convergence field. For the set of standard parameters used in the model, it is shown that the convergence feedback contributes importantly to the aperiodic behaviour of the model. As the strength of the convergence feedback is increased from zero to its standard value, the model variability goes from a periodic regime to an aperiodic regime through a broadening of the frequency spectrum around the basic periodicity of about 4 years. Examination of the forcing associated with the convergence feedback reveals that it is intermittent, with relatively large amplitude only during 2 or 3 months in the early part of the calendar year. This seasonality in the efficiency of the convergence feedback is related to the strong seasonality of the mean convergence over the eastern Pacific. It is shown that if the mean convergence field is fixed at its March value, aperiodic behavior is produced even in the absence of annual cycles in the other mean fields. On the, other hand, if the mean convergence field is fixed at its September value, the coupled model evolution remains close to periodic, even in the presence of the annual cycle in the other fields. The role of convergence feedback on the aperiodic variability of the model for other parameter regimes is also examined. It is shown that a range exists in the strength of the SST anomaly feedback for which the model variability is aperiodic even without the convergence feedback. It appears that in the absence of convergence feedback, enhancement of the strength of the air-sea coupling in the model through other physical processes also results in aperiodicity in the model.
Resumo:
Taking the various values ascribed to biodiversity as its point of departure rather many years ago, the present study aims at deriving a conservation strategy for Uttara Kannada. This hilly district, with the highest proportion of its area under forests in South India, is divided into five ecological zones: coastal, northern evergreen, southern evergreen, moist deciduous, and dry deciduous. The heavily-populated coastal zone includes mangrove forests and estuarine wetlands. The evergreen forests are particularly rich in the diversity of plant species which they support - including wild relatives of a number of cultivated plants. They also serve a vital function in watershed conservation. The moist deciduous forests are rich in bird species; both moist and dry deciduous forests include a number of freshwater ponds and lakes that support a high diversity of aquatic birds.Reviewing the overall distribution of biodiversity, we identify specific localities - including estuaries, evergreen forests, and moist deciduous forests - which should be set aside as Nature reserves. These larger reserves must be complemented by a network of traditionally-protected sacred groves and sacred trees that are distributed throughout the district and that protect today, for instance, the finest surviving stand of dipterocarp trees.We also spell out the necessary policy-changes in overall development strategy that should stem the ongoing decimation of biodiversity. These include (1) revitalizing community-based systems of sustainable management of village forests and protection of sacred groves and trees; (2) reorienting the usage-pattern of reserve forests from production of a limited variety of timber and softwood species for industrial consumers, to production of a larger diversity of non-wood forest produce of commercial value to support the rural economy; (3) utilizing marginal lands under private ownership for generating industrial wood supplies; and (4) provision of incentives for in situ maintenance of land-races of cultivated plants - especially evergreen, fruit-yielding trees - by the local people.It is proposed that this broad framework be now taken to the local communities, and that an action-plan be developed on the basis of inputs provided - and initiatives taken - by them.