969 resultados para Approximate equation
Resumo:
Mathematics Subject Classification: 44A40, 45B05
Resumo:
2000 Mathematics Subject Classification: 35A15, 44A15, 26A33
Resumo:
2000 Mathematics Subject Classification: 26A33 (primary), 35S15
Resumo:
Mathematics Subject Class.: 33C10,33D60,26D15,33D05,33D15,33D90
Resumo:
Mathematics Subject Classification: 26A33, 76M35, 82B31
Resumo:
Mathematics Subject Classification: 45G10, 45M99, 47H09
Resumo:
Mathematics Subject Classification: 26A33; 70H03, 70H25, 70S05; 49S05
Resumo:
The method for the computation of the conditional probability density function for the nonlinear Schrödinger equation with additive noise is developed. We present in a constructive form the conditional probability density function in the limit of small noise and analytically derive it in a weakly nonlinear case. The general theory results are illustrated using fiber-optic communications as a particular, albeit practically very important, example.
Resumo:
2000 Mathematics Subject Classification: Primary 46F25, 26A33; Secondary: 46G20
Resumo:
Adaptive critic methods have common roots as generalizations of dynamic programming for neural reinforcement learning approaches. Since they approximate the dynamic programming solutions, they are potentially suitable for learning in noisy, nonlinear and nonstationary environments. In this study, a novel probabilistic dual heuristic programming (DHP) based adaptive critic controller is proposed. Distinct to current approaches, the proposed probabilistic (DHP) adaptive critic method takes uncertainties of forward model and inverse controller into consideration. Therefore, it is suitable for deterministic and stochastic control problems characterized by functional uncertainty. Theoretical development of the proposed method is validated by analytically evaluating the correct value of the cost function which satisfies the Bellman equation in a linear quadratic control problem. The target value of the critic network is then calculated and shown to be equal to the analytically derived correct value.
Resumo:
Mathematics Subject Classification 2010: 45DB05, 45E05, 78A45.
Resumo:
Mathematical Subject Classification 2010: 35R11, 42A38, 26A33, 33E12.
Resumo:
Mathematics Subject Classification 2010: 35M10, 35R11, 26A33, 33C05, 33E12, 33C20.
Resumo:
Dedicated to Professor A.M. Mathai on the occasion of his 75-th birthday. Mathematics Subject Classi¯cation 2010: 26A33, 44A10, 33C60, 35J10.
Resumo:
Mathematics Subject Classi¯cation 2010: 26A33, 65D25, 65M06, 65Z05.