857 resultados para Approach through a game
Resumo:
A solution-phase approach to synthesize four kinds of mixed-valence, transition metal compounds nanotube is described. The approach is based on the self-assembly of siloxane sol. The resulted production of mixed-valence, transition metal compounds share a common structural characteristic of tubular geometrical morphology, at least for the ones we studied. The results demonstrate that the synthesis strategy can be a general route for preparation of compound nanotubes. In addition, the size control of nanotubular materials can be easily achieved through varying the ionic strength of solution. Based on the strategy, the diameters of ultrathin Ru-Fe nanotubes can be easily tuned between 100 nm and 800 nm.
Resumo:
In this paper, the fabrication of an active surf ace-enhanced Raman scattering (SERS) substrate by self-assembled silver nanoparticles on a monolayer of 4-aminophenyl-group-modified glassy carbon (GC) is reported. Silver nanoparticles are attached to the substrate through the electrostatic force between the negatively charged silver nanoparticles and the positively charged 4-aminophenyl groups on GC. The active SERS substrate has been characterized by means of tapping-mode atomic force microscopy (AFM), indicating that large quantities of silver nanoparticles are uniformly coated on the substrate. Rhodamine 6G (R6G) and p-aminothiophenol (p-ATP) are used as the probe molecules for SERS, resulting in high sensitivity to the SERS response, with the detection limit reaching as low as 10(-9) m. This approach is easily controlled and reproducible, and more importantly, can extend the range of usable substrates to carbon-based materials for SERS with high sensitivity.
Resumo:
Magnetic luminescent nanocomposites were prepared via a layer-by-layer (LbL) assembly approach. The Fe3O4 magnetic nanoparticles of 8.5 nm were used as a template for the deposition of the CdTe quantum dots (QDs)/polyelectrolyte (PE) multilayers. The number of polyelectrolyte multilayers separating the nanoparticle layers and the number of QDs/ polyelectrolyte deposition cycles were varied to obtain two kinds of magnetic luminescent nanocomposites, Fe3O4/PEn/CdTe and Fe3O4/(PE3/CdTe)(n), respectively. The assembly processes were monitored through microelectrophoresis and UV-vis spectra. The topography and the size of the nanocomposites were studied by transmission electron microscopy. The LbL technique for fabricating magnetic luminescent nanocomposites has some advantages to tune their properties. It was found that the selection of a certain number of the inserted polyelectrolyte interlayers and the CdTe QDs loading on the nanocomposites could optimize the photoluminescence properties of the nanocomposites. Furthermore, the nanocomposites could be easily separated and collected in an external magnetic field.
Resumo:
In this article, we report on an approach of using an emulsion polymerized polymer in preparing organic-inorganic nanocomposites through a sol-gel technique. By mixing a polymer emulsion with prehydrolyzed tetraethoxysilane transparent poly(butyl methacrylate)/SiO2, nanocomposites were prepared as shown by TEM. AFM, FTIR, and XPS results show that there is a strong interaction between polymer latex particles and the SiO2 network. Comparison of the emulsion method with a traditional solution method shows that nanocomposites can be prepared by both methods, but there is some difference in their morphology and properties.
Resumo:
Intermolecular ferromagnetic interactions in two stacking models for the dimer of high spin molecules are investigated by means of AM1-CI approach. It is shown that the stability of high spin ground state versus low spin state can be simply traced back to the number and the extent of atoms with reversed signs of pi-spin density in neighboring molecules coupled to each other in shortest distance.
Resumo:
The influence of laser-field parameters, such as intensity and pulse width, on the population of molecular excited state is investigated by using the time-dependent wavepacket method. For a two-state system in intense laser fields, the populations in the upper and lower states are given by the wavefunctions obtained by solving the Schrodinger equation through split-operator scheme. The calculation shows that both the laser intensity and the pulse width have a strong effect on the population in molecular excited state, and that as the common feature of light-matter interaction (LMI), the periodic changing of the population with the evolution time in each state can be interpreted by Rabi oscillation and area-theorem. The results illustrate that by controlling these two parameters, the needed population in excited state of interest can be obtained, which provides the foundation of light manipulation of molecular processes. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
This article contributes to the debate on what form of preparation and support can enhance the intercultural student experience during the Year Abroad. It presents a credit-bearing and multi-modal module at a UK university designed to both prepare students prior to departure through a series of workshops and activities on an e-portfolio and help them engage in meta-reflection on intercultural issues during their stay. The presentation of the curricular components of the course and instances extracted from student blogs are contextualised within theoretical considerations on intercultural education and a holistic approach to student development. The longitudinal evolution of the module is presented in the context of an iterative approach leading to a cycle of revisions and amendments. With its pragmatic stance this article aims to address one of the concerns recently expressed about intercultural education, namely that although intercultural theories are suitably incorporated in the latest thinking on communicative competence, there is a lack of evidence-based practice.
Resumo:
As an animator and practice-based researcher with a background in games development, I am interested in technological change in the video game medium, with a focus on the tools and technologies that drive game character animation and interactive story. In particular, I am concerned with the issue of ‘user agency’, or the ability of the end user to affect story development—a key quality of the gaming experience and essential to the aesthetics of gaming, which is defined in large measure by its interactive elements. In this paper I consider the unique qualities of the video game1 as an artistic medium and the impact that these qualities have on the production of animated virtual character performances. I discuss the somewhat oppositional nature of animated character performances found in games from recent years, which range from inactive to active—in other words, low to high agency. Where procedural techniques (based on coded rules of movement) are used to model dynamic character performances, the user has the ability to interactively affect characters in real-time within the larger sphere of the game. This game play creates a high degree of user agency. However, it lacks the aesthetic nuances of the more crafted sections of games: the short cut-scenes, or narrative interludes where entire acted performances are mapped onto game characters (often via performance capture)2 and constructed into relatively cinematic representations. While visually spectacular, cut-scenes involve minimal interactivity, so user agency is low. Contemporary games typically float between these two distinct methods of animation, from a focus on user agency and dynamically responsive animation to a focus on animated character performance in sections where the user is a passive participant. We tend to think of the majority of action in games as taking place via playable figures: an avatar or central character that represents a player. However, there is another realm of characters that also partake in actions ranging from significant to incidental: non-playable characters, or NPCs, which populate action sequences where game play takes place as well as cut scenes that unfold without much or any interaction on the part of the player. NPCs are the equivalent to supporting roles, bit characters, or extras in the world of cinema. Minor NPCs may simply be background characters or enemies to defeat, but many NPCs are crucial to the overall game story. It is my argument that, thus far, no game has successfully utilized the full potential of these characters to contribute toward development of interactive, high performance action. In particular, a type of NPC that I have identified as ‘pivotal’3—those constituting the supporting cast of a video game—are essential to the telling of a game story, particularly in genres that focus on story and characters: adventure games, action games, and role-playing games. A game story can be defined as the entirety of the narrative, told through non-interactive cut-scenes as well a interactive sections of play, and development of more complex stories in games clearly impacts the animation of NPCs. I argue that NPCs in games must be capable of acting with emotion throughout a game—in the cutscenes, which are tightly controlled, but also in sections of game play, where player agency can potentially alter the story in real-time. When the animated performance of NPCs and user agency are not continuous throughout the game, the implication is that game stories may be primarily told through short movies within games, making it more difficult to define video games animation as a distinct artistic medium.
Resumo:
Lee M.H., Model-Based Reasoning: A Principled Approach for Software Engineering, Software - Concepts and Tools,19(4), pp179-189, 2000.
Resumo:
Schierz, A. (2007). Monitoring knowledge: a text-based approach. Terminology, 13 (2), 125-154. Sponsorship: EPSRC DTG Project IQ, EU IST-FET FP6-516169
Resumo:
F. Smith and Q. Shen. Fault identification through the combination of symbolic conflict recognition and Markov Chain-aided belief revision. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 34(5):649-663, 2004.
Resumo:
T. Boongoen and Q. Shen. 'Detecting False Identity through Behavioural Patterns', In Proceedings of International Crime Science Conference, British Library, London UK, 2008. Publisher's online version forthcoming.;The full text is currently unavailable in CADAIR pending approval by the publisher. Sponsorship: UK EPSRC grant EP/D057086
Resumo:
This paper explores the current conventions and intentions of the game jam - contemporary events that encourage the rapid, collaborative creation of game design prototypes. Game jams are often renowned for their capacity to encourage creativity and the development of alternative, innovative game designs. However, there is a growing necessity for game jams to continue to challenge traditional development practices through evolving new formats and perspectives to maintain the game jam as a disruptive, refreshing aspect of game development culture. As in other creative jam style events, a game jam is not only a process but also, an outcome. Through a discussion of the literature this paper establishes a theoretical basis with which to analyse game jams as disruptive, performative processes that result in original creative artefacts. In support of this, case study analysis of Development Cultures: a series of workshops that centred on innovation and new forms of practice through play, chance, and experimentation, is presented. The findings indicate that game jams can be considered as processes that inspire creativity within a community and that the resulting performances can be considered as a form of creative artefact, thus parallels can be drawn between game jams and performative and interactive art.
Resumo:
Sonic boom propagation in a quiet) stratified) lossy atmosphere is the subject of this dissertation. Two questions are considered in detail: (1) Does waveform freezing occur? (2) Are sonic booms shocks in steady state? Both assumptions have been invoked in the past to predict sonic boom waveforms at the ground. A very general form of the Burgers equation is derived and used as the model for the problem. The derivation begins with the basic conservation equations. The effects of nonlinearity) attenuation and dispersion due to multiple relaxations) viscosity) and heat conduction) geometrical spreading) and stratification of the medium are included. When the absorption and dispersion terms are neglected) an analytical solution is available. The analytical solution is used to answer the first question. Geometrical spreading and stratification of the medium are found to slow down the nonlinear distortion of finite-amplitude waves. In certain cases the distortion reaches an absolute limit) a phenomenon called waveform freezing. Judging by the maturity of the distortion mechanism, sonic booms generated by aircraft at 18 km altitude are not frozen when they reach the ground. On the other hand, judging by the approach of the waveform to its asymptotic shape, N waves generated by aircraft at 18 km altitude are frozen when they reach the ground. To answer the second question we solve the full Burgers equation and for this purpose develop a new computer code, THOR. The code is based on an algorithm by Lee and Hamilton (J. Acoust. Soc. Am. 97, 906-917, 1995) and has the novel feature that all its calculations are done in the time domain, including absorption and dispersion. Results from the code compare very well with analytical solutions. In a NASA exercise to compare sonic boom computer programs, THOR gave results that agree well with those of other participants and ran faster. We show that sonic booms are not steady state waves because they travel through a varying medium, suffer spreading, and fail to approximate step shocks closely enough. Although developed to predict sonic boom propagation, THOR can solve other problems for which the extended Burgers equation is a good propagation model.
Resumo:
Overlay networks have been used for adding and enhancing functionality to the end-users without requiring modifications in the Internet core mechanisms. Overlay networks have been used for a variety of popular applications including routing, file sharing, content distribution, and server deployment. Previous work has focused on devising practical neighbor selection heuristics under the assumption that users conform to a specific wiring protocol. This is not a valid assumption in highly decentralized systems like overlay networks. Overlay users may act selfishly and deviate from the default wiring protocols by utilizing knowledge they have about the network when selecting neighbors to improve the performance they receive from the overlay. This thesis goes against the conventional thinking that overlay users conform to a specific protocol. The contributions of this thesis are threefold. It provides a systematic evaluation of the design space of selfish neighbor selection strategies in real overlays, evaluates the performance of overlay networks that consist of users that select their neighbors selfishly, and examines the implications of selfish neighbor and server selection to overlay protocol design and service provisioning respectively. This thesis develops a game-theoretic framework that provides a unified approach to modeling Selfish Neighbor Selection (SNS) wiring procedures on behalf of selfish users. The model is general, and takes into consideration costs reflecting network latency and user preference profiles, the inherent directionality in overlay maintenance protocols, and connectivity constraints imposed on the system designer. Within this framework the notion of user’s "best response" wiring strategy is formalized as a k-median problem on asymmetric distance and is used to obtain overlay structures in which no node can re-wire to improve the performance it receives from the overlay. Evaluation results presented in this thesis indicate that selfish users can reap substantial performance benefits when connecting to overlay networks composed of non-selfish users. In addition, in overlays that are dominated by selfish users, the resulting stable wirings are optimized to such great extent that even non-selfish newcomers can extract near-optimal performance through naïve wiring strategies. To capitalize on the performance advantages of optimal neighbor selection strategies and the emergent global wirings that result, this thesis presents EGOIST: an SNS-inspired overlay network creation and maintenance routing system. Through an extensive measurement study on the deployed prototype, results presented in this thesis show that EGOIST’s neighbor selection primitives outperform existing heuristics on a variety of performance metrics, including delay, available bandwidth, and node utilization. Moreover, these results demonstrate that EGOIST is competitive with an optimal but unscalable full-mesh approach, remains highly effective under significant churn, is robust to cheating, and incurs minimal overheads. This thesis also studies selfish neighbor selection strategies for swarming applications. The main focus is on n-way broadcast applications where each of n overlay user wants to push its own distinct file to all other destinations as well as download their respective data files. Results presented in this thesis demonstrate that the performance of our swarming protocol for n-way broadcast on top of overlays of selfish users is far superior than the performance on top of existing overlays. In the context of service provisioning, this thesis examines the use of distributed approaches that enable a provider to determine the number and location of servers for optimal delivery of content or services to its selfish end-users. To leverage recent advances in virtualization technologies, this thesis develops and evaluates a distributed protocol to migrate servers based on end-users demand and only on local topological knowledge. Results under a range of network topologies and workloads suggest that the performance of the distributed deployment is comparable to that of the optimal but unscalable centralized deployment.