864 resultados para Alongamento Ósseo
Resumo:
Among the options for plastics modification more convenient, both from a technical-scientific and economic, is the development of polymer blends by processing in the molten state. This work was divide into two stages, with the aim to study the phase morphology of binary blend PMMA / PET blend and this compatibilized by the addition of the poly(methyl methacrylate-co-glycidyl methacrylate-co-ethyl acrylate) copolymer (MMA-GMA-EA). In the first stage is analyzed the morphology of the blend at a preliminary stage where we used the bottle-grade PET in a Haake torque rheometer and the effect of compatibilizer in this blend was evaluated. In the second stage the blend was processed using the recycled PET in a single screw extruder and subsequently injection molding in the shape of specimens for mechanical tests. In both stages we used a transmission electron microscopy (TEM) to observe the morphologies of the samples and an image analyzer to characterize them. In the second stage, as well as analysis by TEM, tensile test, scanning electron microscopy (SEM) and atomic force microscopy (AFM) was performed to correlate the morphology with the mechanical properties. The samples used in morphological analyzes were sliced by cryo-ultramicrotomy technique for the analysis by TEM and the analysis by SEM and AFM, we used the flat face of the block after cut cryogenic. It was found that the size of the dispersed phase decreased with the addition of MMA-GMA-EA in blends prepared in a Haake. In the tensile test, the values of maximum tensile strength and modulus of elasticity is maintained in a range between the value of pure PMMA the pure PET, while the elongation at break was influenced by the composition by weight of the PMMA mixture. The coupling agent corroborated the results presented in the blend PMMA / PETrec / MMA-GMA-EA (80/15/5 %w/w), obtained by TEM, AFM and SEM. It was concluded that the techniques used had a good morphologic correlation, and can be confirmed for final analysis of the morphological characteristics of the blends PMMA / PET
Resumo:
The study aimed at the treatment of attapulgite for the development and characterization of composite recycled low density polyethylene - PEBD_rec embedded with natural attapulgite - ATP_NAT, sifted - ATP_PN and attapulgite treated with sulfuric acid - ATP_TR in different compositions (1, 3 and 5%) and compared with the PEBD_rec. The atapulgitas, natural, screened and treated, were characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF), particle size analysis, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and determining the area specific surface (BET). The composites were characterized by thermogravimetry (TG), differential scanning calorimetry (DSC), Xray diffraction (XRD), torque rheometry, scanning electron microscopy (SEM) and traction. The composite PEBD_rec / ATP (natural, sieved and treated) were produced by mixing in the molten state in a single screw extruder matrix wire with subsequent reprocessing matrix tape. It was found that the screening of attapulgite not reduce the quantity of quartz and the acid treatment completely extracted dolomite aggregate impurities of the channels attapulgite, and increase their surface area. The addition of attapulgite in PEBD_rec acts as a catalyst, reducing the thermal stability of the polymer. The increased concentration of attapulgite, increases resistance and reduces the elongation at break and modulus of elasticity of the composite PEBD_rec / attapulgite
Resumo:
Dissertação para obtenção do grau de Mestre no Instituto Superior de Ciências da Saúde Egas Moniz
Resumo:
Dissertação para obtenção do grau de Mestre no Instituto Superior de Ciências da Saúde Egas Moniz
Resumo:
Dissertação para obtenção do grau de Mestre no Instituto Superior de Ciências da Saúde Egas Moniz
Resumo:
Dissertação de Mestrado Integrado em Medicina Veterinária
Resumo:
This study determined roller massager (RM) effectiveness on ankle plantar flexors’ recovery after exercise-induced muscle damage (EIMD) stimulus. Two experiments were conducted. The first experiment (n=10) examined functional [i.e., ankle plantar flexion maximal voluntary isometric contraction (MVIC) and submaximal (30% of MVIC) sustained force; ankle dorsiflexion maximal range of motion and resistance to stretch; and pain pressure threshold] and morphological [medial gastrocnemius (MG) cross sectional area, thickness, fascicle length, and fascicle angle] variables, before and immediately, 1h, 24h, 48h, and 72 after EIMD. In the second experiment (n=10), changes in MG deoxyhemoglobin concentration kinetics (velocity and amplitude) during a submaximal sustained force test were observed before and 48h after EIMD. Participants performed both experiments twice, with and without (NRM) the application of a RM (6 × 45 seconds with 20 seconds rest between sets). RM intervention did not alter plantar flexors’ strength and flexibility impairment after EIMD, as well the MG morphology and oxygenation kinetics (p>0.05). On the other hand, a strong tendency for an acute (within 1 hour) change of ipsilateral (post-effects: RM=+19%, NRM=-5%, p=0.032) and contralateral (p=0.095) MG pain pressure threshold was observed. In conclusion, the present results suggest that a roller massager has no effect on muscular performance, morphology, and oxygenation recovery after EIMD, except for muscle pain pressure threshold (i.e., a soreness). Thus, RM may have potential application in recovery for people with increased muscle soreness, if performed immediately before a physical task.
Resumo:
Dissertação de Mestrado, Biologia Marinha, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015
Resumo:
Dissertação de Mestrado, Engenharia Biológica, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2014
Multifactorial approach to non-viral gene therapy: development of an efficient system for the retina
Resumo:
Tese de Doutoramento, Ciências Biomédicas, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, 2016
Resumo:
Mestrado em Engenharia Agronómica - Especialização em Horto-fruticultura e Viticultura - Instituto Superior de Agronomia - UL
Resumo:
This work studied the immiscible blend of elastomeric poly(methyl methacrylate) (PMMA) with poly(ethylene terephthalate) (PET) bottle grade with and without the use of compatibilizer agent, poly(methyl methacrylate-co-glycidyl methacrylate - co-ethyl acrylate) (MGE). The characterizations of torque rheometry, melt flow index measurement (MFI), measuring the density and the degree of cristallinity by pycnometry, tensile testing, method of work essential fracture (EWF), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were performed in pure polymer and blends PMMA/PET. The rheological results showed evidence of signs of chemical reaction between the epoxy group MGE with the end groups of the PET chains and also to the elastomeric phase of PMMA. The increase in the concentration of PET reduced torque and adding MGE increased the torque of the blend of PMMA/PET. The results of the MFI also show that elastomeric PMMA showed lower flow and thus higher viscosity than PET. In the results of picnometry observed that increasing the percentage of PET resulted in an increase in density and degree crystallinity of the blends PMMA/PET. The tensile test showed that increasing the percentage of PET resulted in an increase in ultimate strength and elastic modulus and decrease in elongation at break. However, in the phase inversion, where the blend showed evidence of a co-continuous morphology and also, with 30% PET dispersed phase and compatibilized with 5% MGE, there were significant results elongation at break compared to elastomeric PMMA. The applicability of the method of essential work of fracture was shown to be possible for most formulations. And it was observed that with increasing elastomeric PMMA in the formulations of the blends there was an improvement in specific amounts of essential work of fracture (We) and a decrease in the values of specific non-essential work of fracture (βWp)
Resumo:
Dissertação de Mestrado, Biologia Marinha, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2016
Resumo:
O trigo é uma cultura de ciclo anual cultivada no inverno. Nas culturas de arroz, trigo, aveia e milho, foram evidenciados boas correlações entre a leitura SPAD e a produtividade de grãos. O trabalho teve como objetivo estudar o efeito da adubação foliar com boro (B) na presença de aminoácidos (AAs) no teor de clorofila e produtividade de grãos do trigo, assim como na sua correlação. O experimento foi realizado na Embrapa Soja (Londrina - PR), no ano de 2014. O solo da área experimental é classificado como Latossolo Vermelho distroférrico. O delineamento experimental foi em blocos ao acaso, com quatro repetições e seis tratamentos com doses de ácido bórico na presença de aminoácidos, exceto a testemunha. As doses estudadas foram: T1- 0 kg ha-1 de H3BO3 sem aminoácidos (Testemunha); T2- 0 kg ha-1 de H3BO3; T3- 1 kg ha-1 de H3BO3; T4- 2 kg ha-1 de H3BO3; T5- 4 kg ha-1 de H3BO3; T6- 8 kg ha-1 de H3BO3. O plantio da cultivar BRS Pardela foi realizado com semeadora com sistema de plantio direto, com espaçamento entre linha de 50 cm e a densidade de semeadura utilizada foi ajustada para atingir 250.000 plantas ha-1. A adubação de semeadura foi realizada com 40 kg ha-1 de N (ureia), 60 kg ha-1 de P2O5 (superfosfato triplo) + 40 kg ha-1 K2O (KCl) + 2,0 kg ha-1 de Cu (sulfato de cobre 24,5%), 2,0 kg ha-1 de Mn (sulfato de manganês 30%) e 2,0 kg ha-1 de Zn (sulfato de zinco 21%). A adubação em cobertura foi realizada aos 40 dias após o plantio com 20 kg ha-1 K2O (KCl). A adubação foliar com boro e AAs (2 L ha-1) foi realizada na fase final de alongamento e início de pré-espigamento. Foi utilizado o ácido bórico (17%B) e os aminoácidos na concentração (1/200, v/v) com 6,8% de glicina, 4,4% de prolina, 3,3% de ácido glutâmico, 2,7% de alanina, 1,9% de arginina, 1,7% de ácido aspártico, 1,3% de lisina, 1,3% de histidina e 1,0% de leucina. As práticas de proteção de plantas via controle químico de pragas, doenças e plantas daninhas foram realizadas conforme as indicações técnicas para a cultura de trigo a fim de não interferirem nos resultados obtidos. Avaliou-se a produtividade de grãos de trigo e o teor de clorofila, determinado indiretamente no terço médio da folha bandeira de cinco plantas por parcela, no florescimento, por meio de leituras SPAD com auxílio de um clorofilômetro digital (Minolta 502). Os dados foram submetidos à análise de variância pelo teste F. A comparação de médias pelo teste de Tukey e as correlações foram feitas em nível de 5% de significância. Não houve efeito significativo dos tratamentos no teor de clorofila (SPAD) e na produtividade de grãos de trigo. A produtividade média de grãos foi de 4.266 kg ha-1 e 40 SPAD. Não houve correlação entre a leitura SPAD e a produtividade de grãos. Conclui-se que a adubação foliar com boro na presença de aminoácidos não modificou o teor de clorofila e a produtividade de grãos do trigo, bem como não houve correlação entre os fatores.
Resumo:
The development of new materials to fill the demand of technological advances is a challenge for many researchers around the world. Strategies such as making blends and composites are promising alternatives to produce materials with different properties from those found in conventional polymers. The objective of this study is to evaluate the effect of adding the copolymer poly(ethylene methyl acrylate) (EMA) and cotton linter fibers (LB) on the properties of recycled poly(ethylene terephthalate) (PETrec) by the development of PETrec/EMA blend and PETrec/EMA/LB blend composite. In order to improve the properties of these materials were added as compatibilizers: Ethylene - methyl acrylate - glycidyl methacrylate terpolymer (EMA-GMA) and maleic anhydride grafted polyethylene (PE-g-MA). The samples were produced using a single screw extruder and then injection molded. The obtained materials were characterized by thermogravimetry (TG), melt flow index (MFI) mensurements, torque rheometry, pycnometry to determinate the density, tensile testing and scanning electron microscopy (SEM). The rheological results showed that the addition of the EMA copolymer increased the viscosity of the blend and LB reduces the viscosity of the blend composite. SEM analysis of the binary blend showed poor interfacial adhesion between the PETrec matrix and the EMA dispersed phase, as well as the blend composite of PETrec/EMA/LB also observed low adhesion with the LB fiber. The tensile tests showed that the increase of EMA percentage decreased the tensile strength and the Young s modulus, also lower EMA percentage samples had increased the elongation at break. The blend composite showed an increase in the tensile strength and in the Young`s modulus, and a decrease in the elongation at break. The blend formulations with lower EMA percentages showed better mechanical properties that agree with the particle size analysis which showed that these formulations presented a smaller diameter of the dispersed phase. The blend composite mechanical tests showed that this material is stronger and stiffer than the blend PETrec/EMA, whose properties have been reduced due to the presence of EMA rubbery phase. The use of EMA-GMA was effective in reducing the particle size of the EMA dispersed phase in the PETrec/EMA blend and PE-g-MA showed evidences of reaction with LB and physical mixture with the EMA