939 resultados para Al-si Alloy


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this present work a method for the determination of Ca, Fe, Ga, Na, Si and Zn in alumina (Al(2)O(3)) by inductively coupled plasma optical emission spectrometry (ICP OES) with axial viewing is presented. Preliminary studies revealed intense aluminum spectral interference over the majority of elements and reaction between aluminum and quartz to form aluminosilicate, reducing drastically the lifetime of the torch. To overcome these problems alumina samples (250 mg) were dissolved with 5 mL HCl + 1.5 mLH(2)SO(4) + 1.5 mL H(2)O in a microwave oven. After complete dissolution the volume was completed to 20 mL and aluminum was precipitated as Al(OH)(3) with NH(3) (by bubbling NH(3) into the solution up to a pH similar to 8, for 10 min). The use of internal standards (Fe/Be, Ga/Dy, Zn/In and Na/Sc) was essential to obtain precise and accurate results. The reliability of the proposed method was checked by analysis of alumina certified reference material (Alumina Reduction Grade-699, NIST). The found concentrations (0.037%w(-1) CaO, 0.013% w w(-1) Fe(2)O(3), 0.012%w w(-1)Ga(2)O(3), 0.49% w w(-1) Na(2)O, 0.014% w w(-1) SiO(2) and 0.013% w w(-1) ZnO) presented no statistical differences compared to the certified values at a 95% confidence level. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this project forging of aluminum alloy Al 6026 T9 has been performed in the temperature range of 400 °C – 470 °C. The alloy which was in the shape of a cylindrical billet was formed in a press with the aim of analyzing the effect of different forging temperatures and required press load for optimal die filling. The component’s dimensions were later measured and compared to a reference piece. To ease the flow of material a lubricant was used between the billet and the die. This was demonstrated by compressing the billet with and without any lubricant.The performed experiments show that the lubricant reduces friction and makes it easier for the material to flow into the die. Higher billet temperature than 450 °C is deemed unnecessary as it does not give any significant improvement in filling the die. The experiments also conclude that a press load of at least 280 tons is required for these conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Existe, por parte da comunidade industrial e científica, uma incessante procura por revestimentos protetores mais resistentes a ambientes cada vez mais agressivos, como aquele encontrado pelas ferramentas de injeção de alumínio. Uma das tendências que surge para aumentar a vida útil destas ferramentas é a de produzir filmes finos compostos por diversas camadas, cada qual tendo sua função especifica; um exemplo deste tipo de revestimento é aquele composto por camada de adesão, camada intermediária e camada de trabalho. Neste trabalho, foi proposto estudar a utilização do nitreto de titânio e alumínio (Ti,Al)N, tanto como camada intermediária quanto de trabalho, uma vez que este apresenta alta dureza, grande resistência ao desgaste e superior resistência à oxidação. Para a camada intermediária, foram depositados filmes finos tipo multicamadas (TixAl1-x)N/(TiyAly-1)N, (Ti,Al)N/TiN e (Ti,Al)N/AlN, com variação na estrutura cristalina e na espessura das camadas individuais, pois dependendo da quantidade de alumínio adicionado ao sistema, o (Ti,Al)N apresenta mudanças em algumas de suas propriedades, como estrutura cristalina, dureza e resistência mecânica. Os filmes finos monolíticos de (Ti,Al)N e suas multicamadas foram depositadas por magnetron sputtering reativo e caracterizados quanto ao crescimento cristalino, estequiometria, espessura das camadas individuais, dureza e módulo de elasticidade. Na segunda parte deste trabalho, a fim de avaliar a camada de trabalho, é apresentada uma nova técnica de caracterização in-situ, que avalia as reações químicas que ocorrem entre o alumínio e os materiais selecionados. Foram comparados entre si o aço AISI H13, os revestimentos nitreto de titânio, nitreto de cromo, e três diferentes composições de (Ti,Al)N, a fim de verificar qual material apresenta o comportamento mais inerte em contato ao alumínio a altas temperaturas. Para tanto, foram utilizadas as técnicas de calorimetria diferencial de varredura (DSC) e difração de raios X (XRD).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neste trabalho, estudamos a posição de átomos de F na estrutura cristalina do Si. As amostras foram pré-amorfizadas utilizando um feixe de Si de 200 keV e, após, implantadas com F. Então recristalizamos a camada amorfa através do processo de Epitaxia de Fase Sólida (EFS). Empregamos as técnicas de Espectrometria de Retroespalhamento Rutherford, na condição de canalização iônica, e de Análise por Reação Nuclear (NRA), através da reação ressonante ( ) O p F 16 19 , αγ , à 5 , 340 keV, para determinar a posição dos átomos de F e, depois, reproduzimos os resultados experimentais através do programa de simulação computacional chamado Simulação Adaptada de Canalização de Íons Rápidos em Sólidos (CASSIS - Channeling Adapted Simulation of Swift Ions in Solids). Os resultados obtidos apontam para duas possíveis combinações lineares distintas de sítios. Uma delas concorda com a proposta teórica de Hirose et al. (Materials Science & Engineering B – 91-92, 148, 2002), para uma condição experimental similar. Nessa configuração, os átomos de F estão na forma de complexos entre átomos de flúor e vacâncias (F-V). A outra combinação ainda não foi proposta na literatura e também pode ser pensada como um tipo de complexo F-V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Foram estudadas as propriedades elétricas de estruturas MOS envolvendo materiais com Zr e Hf: Al/HfO2/Si, Al/HfAlO/Si, Al/ZrO2/Si e Al/ZrAlO/Si depositadas por JVD (Jet Vapor Deposition) submetidas a diferentes doses de implantação de nitrogênio e tratamentos térmicos; Au/HfO2/Si e Au/HfxSiyOz/Si preparadas por MOCVD (Metal-Organic Chemical Vapor Deposition) e Au/HfxSiyOz/SiO2/Si preparadas por sputtering reativo em O2 submetidas a tratamentos térmicos distintos. Para isso, além das medidas de C-V e I-V padrão, foi desenvolvido o método da condutância para estudo da densidade de estados na interface dielétrico/Si, o qual mostrou-se mais viável para as estruturas com dielétricos alternativos. A inclusão de Al na camada de dielétrico, bombardeamento por íons de nitrogênio, e tratamentos térmicos rápidos em atmosferas de O2 e N2 foram responsáveis por mudanças nas propriedades das amostras. Diversos mecanismos físicos que influenciam as propriedades elétricas dessas estruturas foram identificados e discutidos. Foi constatado que as interfaces com menores densidades de estados foram as das amostras preparadas por MOCVD e sputtering reativo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A avaliação de risco sísmico, fundamental para as decisões sobre as estruturas de obras de engenharia e mitigação de perdas, envolve fundamentalmente a análise de ameaça sísmica. Calcular a ameaça sísmica é o mesmo que calcular a probabilidade de que certo nível de determinada medida de intensidade em certo local durante um certo tempo seja excedido. Dependendo da complexidade da atividade geológica essas estimativas podem ser bas- tante sofisticadas. Em locais com baixa sismicidade, como é o caso do Brasil, o pouco tempo (geológico) de observação e a pouca quantidade de informação são fontes de muitas incer- tezas e dificuldade de análise pelos métodos mais clássicos e conhecidos que geralmente consideram, através de opiniões de especialistas, determinadas zonas sísmicas. Serão discutidas algumas técnicas de suavização e seus fundamentos como métodos al- ternativos ao zoneamento, em seguida se exemplifica suas aplicações no caso brasileiro.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nickel alloys are frequently used in applications that require resistance at high temperatures associated with resistance to corrosion. Alloys of Ni-Si-C can be obtained by means of powder metallurgy in which powder mixtures are made of metallic nickel powders with additions of various alloying carriers for such were used in this study SiC, Si3N4 or Si metal with graphite. Carbonyl Ni powder with mean particle size of 11 mM were mixed with 3 wt% of SiC powders with an average particle size of 15, 30 and 50 μm and further samples were obtained containing 4 to 5% by mass of SiC with average particle size of 15 μm. Samples were also obtained by varying the carrier alloy, these being Si3N4 powder with graphite, with average particle size of 1.5 and 5 μm, respectively. As a metallic Si graphite with average particle size of 12.5 and 5 μm, respectively. The reference material used was nickel carbonyl sintered without adding carriers. Microstructural characterization of the alloys was made by optical microscopy and scanning electron microscopy with semi-quantitative chemical analysis. We determined the densities of the samples and measurement of microhardness. We studied the dissociation of carriers alloy after sintering at 1200 ° C for 60 minutes. Was evaluated also in the same sintering conditions, the influence of the variation of average particle size of the SiC carrier to the proportion of 3% by mass. Finally, we studied the influence of variation of the temperatures of sintering at 950, 1080 and 1200 ° C without landing and also with heights of 30, 60, 120 and 240 minutes for sintering where the temperature was 950 °C. Dilatometry curves showed that the SiC sintered Ni favors more effectively than other carriers alloy analyzed. SiC with average particle size of 15 μm active sintering the alloy more effectively than other SiC used. However, with the chemical and morphological analyzes for all leagues, it was observed that there was dissociation of SiC and Si3N4, as well as diffusion of Si in Ni matrix and carbon cluster and dispersed in the matrix, which also occurred for the alloys with Si carriers and metallic graphite. So the league that was presented better results containing Si Ni with graphite metallic alloy as carriers, since this had dispersed graphite best in the league, reaching the microstructural model proposed, which is necessary for material characteristic of solid lubricant, so how we got the best results when the density and hardness of the alloy

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aiming to reduce and reuse waste oil from oily sludge generated in large volumes by the oil industry, types of nanostructured materials Al-MCM-41 and Al-SBA-15, with ratios of Si / Al = 50, were synthesized , and calcined solids used as catalysts in the degradation of oily sludge thermocatalytic oil from oilfield Canto do Amaro, in the state of Rio Grande do Norte. Samples of nanostructured materials were characterized by thermogravimetric analysis (TG / DTG), X-ray diffraction (XRD), scanning electron microscopy (SEM), absorption spectroscopy in the infrared Fourier transform (FT-IR) and adsorption nitrogen (BET). The characterization showed that the synthesized materials resulted in a catalyst nanostructure, and ordered pore diameter and surface area according to existing literature. The oily sludge sample was characterized by determining the API gravity and sulfur content and SARA analysis (saturates, aromatics, resins and asphaltenes). The results showed a material equivalent to the average oil with API gravity of 26.1, a low sulfur content and considerable amount of resins and asphaltenes, presented above in the literature. The thermal and catalytic degradation of the oily sludge oil was performed from room temperature to 870 ° C in the ratios of heating of 5, 10 and 20 ° C min-1. The curves generated by TG / DTG showed a more accelerated degradation of oily sludge when it introduced the nanostructured materials. These results were confirmed by activation energy calculated by the method of Flynn-Wall, in the presence of catalysts reduced energy, in particular in the range of cracking, showing the process efficiency, mainly for extraction of lightweight materials of composition of oily sludge, such as diesel and gasoline

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work discusses on the structural evaluation of mechanically alloyed and heat-treated Ti-25at%Si powders. The milling process was conducted in a planetary ball mill using stainless steel balls/vials, 200 rpm and ball-to-powder weight ratio of 5:1, whereas the heat treatment was conducted under Ar atmosphere at 1100 C for 4 h. Samples were characterized by X-ray diffraction, differential scanning calorimetry, scanning electron microscopy and energy dispersive spectrometry. The Si peaks disappeared after milling for 30h, indicating that the Si atoms were dissolved into the Ti lattice in order to form an extended solid solution. The Ti peaks were broadened and their intensities reduced for longer milling times whereas a halo was formed in Ti-25Si powders milled for 200h suggesting that an amorphous structure was achieved. The crystallite size was decreased with increasing milling times. A large Ti3Si amount was found in mechanically alloyed Ti-25at%Si powders after heating at 1100 degrees C for 4h.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Considering the constant technological developments in the aeronautical, space, automotive, shipbuilding, nuclear and petrochemical fields, among others, the use of materials with high strength mechanical capabilities at high temperatures has been increasingly used. Among the materials that meet the mechanical strength and corrosion properties at temperatures around 815 degrees C one can find the nickel base alloy Pyromet 31V (SAE HEV8). This alloy is commonly applied in the manufacturing of high power diesel engines exhaust valves where it is required high resistance to sulphide, corrosion and good resistance to creep. However, due to its high mechanical strength and low thermal conductivity its machinability is made difficult, creating major challenges in the analysis of the best combinations among machining parameters and cutting tools to be used. Its low thermal conductivity results in a concentration of heat at high temperatures in the interfaces of workpiece-tool and tool-chip, consequently accelerating the tools wearing and increasing production costs. This work aimed to study the machinability, using the carbide coated and uncoated tools, of the hot-rolled Pyromet 31V alloy with hardness between 41.5 and 42.5 HRC. The nickel base alloy used consists essentially of the following components: 56.5% Ni, 22.5% Cr, 2,2% Ti, 0,04% C, 1,2% Al, 0.85% Nb and the rest of iron. Through the turning of this alloy we able to analyze the working mechanisms of wear on tools and evaluate the roughness provided on the cutting parameters used. The tests were performed on a CNC lathe machine using the coated carbide tool TNMG 160408-23 Class 1005 (ISO S15) and uncoated tools TNMG 160408-23 Class H13A (ISO S15). Cutting fluid was used so abundantly and cutting speeds were fixed in 75 and 90 m/min. to feed rates that ranged from 0.12, 0.15, 0.18 and 0.21 mm/rev, and cutting depth of 0.8mm. The results of the comparison between uncoated tools and coated ones presented a machined length of just 30% to the first in relation to the performance of the second. The coated tools has obtained its best result for both 75 and 90 m/min. with feed rate of 0.15 mm/rev, unlike the uncoated tool which obtained its better results to 0.12 mm/rev.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mesoporous nanostructured materials have been studied for application in the oil industry, in particular Al-MCM-41, due to the surface area around 800 to 1.000 m2 g-1 and, pore diameters ranging from 2 to 10 nm, suitable for catalysis to large molecules such as heavy oil. The MCM-41 has been synthesized by hydrothermal method, on which aluminum was added, in the ratio Si/Al equal to 50, to increase the generation of active acid sites in the nanotubes. The catalyst was characterized by X-ray diffraction (XRD), surface area by the BET method and, the average pore volume BJH method using the N2 adsorption, absorption spectroscopy in the infrared Fourier Transform (FT-IR) and determination of surface acidity with application of a probe molecule - n-butylamine. The catalyst showed well-defined structural properties and consistent with the literature. The overall objective was to test the Al-MCM-41 as catalyst and thermogravimetric perform tests, using two samples of heavy oil with API º equal to 14.0 and 18.5. Assays were performed using a temperature range of 30-900 ° C and heating ratios (β) ranging from 5, 10 and 20 °C min-1.The aim was to verify the thermogravimetric profiles of these oils when subjected to the action of the catalyst Al- MCM-41. Therefore, the percentage ranged catalyst applied 1, 3, 5, 10 and 20 wt%, and from the TG data were applied two different kinetic models: Ozawa-Flynn-Wall (OFW) and Kissinger-Akahrira-Sunose (KAS).The apparent activation energies found for both models had similar values and were lower for the second event of mass loss known as cracking zone, indicating a more effective performance of Al-MCM-41 in that area. Furthermore, there was a more pronounced reduction in the value of activation energy for between 10 and 20% by weight of the oil-catalyst mixture. It was concluded that the Al-MCM-41 catalyst has applicability in heavy oils to reduce the apparent activation energy of a catalyst-oil system, and the best result with 20% by weight of Al-MCM-41

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To evaluate the effect of airborne-particle abrasion and mechanico-thermal cycling on the flexural strength of a ceramic fused to cobalt-chromium alloy or gold alloy.Materials and Methods: Metallic bars (n = 120) were made (25 mm x 3 mm x 0.5 mm): 60 with gold alloy and 60 with Co-Cr. At the central area of the bars (8 mm x 3 mm), a layer of opaque ceramic and then two layers of glass ceramic (Vita VM13, Vita Zahnfabrick) were fired onto it (thickness: 1 mm). Ten specimens from each alloy group were randomly allocated to a surface treatment [(tungsten bur or air-particle abrasion (APA) with Al(2)O(3) at 10 mm or 20 mm away)] and mechanico-thermal cycling (no cycling or mechanically loaded 20,000 cycles; 10 N distilled water at 37 degrees C and then thermocycled 3000 cycles; 5 degrees C to 55 degrees C, dwell time 30 seconds) combination. Those specimens that did not undergo mechanico-thermal cyclingwere stored inwater (37 degrees C) for 24 hours. Bond strength was measured using a three-point bend test, according to ISO 9693. After the flexural strength test, failure types were noted. The data were analyzed using three factor-ANOVA and Tukey's test (alpha = 0.05).Results: There were no significant differences between the flexural bond strength of gold and Co-Cr groups (42.64 +/- 8.25 and 43.39 +/- 10.89 MPa, respectively). APA 10 and 20 mm away surface treatment (45.86 +/- 9.31 and 46.38 +/- 8.89 MPa, respectively) had similar mean flexural strength values, and both had significantly higher bond strength than tungsten bur treatment (36.81 +/- 7.60 MPa). Mechanico-thermal cycling decreased the mean flexural strength values significantly for all six alloy-surface treatment combinations tested when compared to the control groups. The failure type was adhesive in the metal/ceramic interface for specimens surface treated only with the tungsten bur, and mixed for specimens surface treated with APA 10 and 20 mm.Conclusions: Considering the levels adopted in this study, the alloy did not affect the bond strength; APA with Al(2)O(3) at 10 and 20 mm improved the flexural bond strength between ceramics and alloys used, and the mechanico-thermal cycling of metal-ceramic specimens resulted in a decrease of bond strength.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To evaluate the effect of the opaque layer firing temperature and mechanical and thermal cycling on the flexural strength of a ceramic fused to commercial cobalt-chromium alloy (Co-Cr). The hypotheses were that higher opaque layer temperatures increase the metal/ceramic bond strength and that aging reduces the bond strength.Materials and Methods: Metallic frameworks (25 x 3 x 0.5 mm(3); ISO 9693) (N = 60) were cast in Co-Cr and airborne-particle abraded (Al(2)O(3): 150 mu m) at the central area of the frameworks (8 x 3 mm(2)) and divided into three groups (N = 20), according to the opaque layer firing temperature: Gr1 (control)-900 degrees C; Gr2-950 degrees C; Gr3-1000 degrees C. The opaque ceramic (Opaque, Vita Zahnfabrick, Bad Sackingen, Germany) was applied, and the glass ceramic (Vita Omega 900, Vita Zahnfabrick) was fired onto it (thickness: 1 mm). While half the specimens from each group were randomly tested without aging (water storage: 37 degrees C/24 hours), the other half were mechanically loaded (20,000 cycles; 50 N load; distilled water at 37 degrees C) and thermocycled (3000 cycles; 5 degrees C to 55 degrees C, dwell time: 30 seconds). After the flexural strength test, failure types were noted. The data were analyzed using 2-way ANOVA and Tukey's test (alpha = 0.05).Results: Gr2 (19.41 +/- 5.5 N) and Gr3 (20.6 +/- 5 N) presented higher values than Gr1 (13.3 +/- 1.6 N) (p = 0.001). Mechanical and thermal cycling did not significantly influence the mean flexural strength values (p > 0.05). Increasing the opaque layer firing temperature improved the flexural bond strength values (p < 0.05). The hypotheses were partially accepted.Conclusion: Increasing of the opaque layer firing temperature improved the flexural bond strength between ceramic fused to Co-Cr alloy.