992 resultados para Air temperature


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The role of snow depth of Tibetan Plateau in the onset of South China Sea summer monsoon and the influence of ENSO on snow depth of Tibetan Plateau are investigated with use of data from ECMWF reanalysis and NCEP/NCAR reanalysis. The results are as follows: (1) The snow depth data from ECMWF reanalysis are tested and reliable, and can be used to study the influence of snow depth of Tibetan Plateau on the onset of South China Sea summer monsoon; (2) Anomaly of snow depth of Tibetan Plateau causes anomaly in air temperature and its contrast between the Indian Ocean and the continent resulting in easterly wind anomaly over 500 hPa and hence as well as in the atmospheric circulation in the lower layer. For the year of negative anomaly of snow depth a westerly wind anomaly with a cyclone pair takes place, while for positive anomaly of snow depth an easterly anomaly occurs with an anticyclone pair; (3) While positive anomaly of SST occurs in the eastern Pacific Ocean, positive anomaly of air pressure also takes place over the eastern Indian Ocean and the South China Sea, causing stronger meridional pressure gradient between the ocean and continent and then westerly wind anomaly. At the same time, the atmospheric pressure increases in the northern Tibetan Plateau, northerly wind gets stronger, and subtropical front strengthens. All of these are favorable for snowfall over Tibetan Plateau.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To understand the carbon dynamics and correlation between net ecosystem CO2 exchange and environmental conditions of alpine meadow ecosystem in the Qinghai-Tibetan Plateau, we analyzed two years (from 2002 to 2003) data measured by eddy covariance method. The results showed that in those two years the ecosystem behaved as the carbon sink and absorbed carbon dioxide 286.74 g/(m2•a) and 284.94 g/(m2•a),respectively. It suggested that there were not distinct correlations between the daily CO2 flux (net ecosystem exchange, NEE) and photosynthetic photon flux density (PPFD) and soil water content (SWC) while daily NEE was evidently corresponded to air temperature. The "turning point air temperature", was meant at that air temperature, when the increase rate of ecosystem photosynthesis (gross primary production, GPP) began to be above the increase rate of ecosystem respiration (Reco), and was 2.47 ℃ by an exponential-linear model established in the alpine meadow. Then, if the precipitation and PPFD doesnt change greatly, moreover, the alpine meadow keeps balance (not lots of variations among years, especially in plant species, plant growth), the capacity of alpine meadow ecosystem carbon sink will be enhanced when the increase of air temperature at above 2.47 ℃, and decreased when that of air temperature at below 2.47 ℃.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The increasing trend of air temperature along with the climate warming has been accepted gradual-ly by scientists and by the general public. Qinghai-Xizang Plateau, a unique geographic unit due to high-altitude climate, is one of the most susceptible regions to climate warming. Its ecosystem is very fragile and sensi-tive to climate change. In order to get a better understanding of the impacts of climate warming on the nutrient contents of herbage grown in Qinghai-Xizang Plateau, a simulative study was implemented at Daban Moutain by using temperature differences resulted from sites selected at different altitudes and nutrient contents and in vitro digestibility were determined for assessing the quality of the grown herbage. There were significant downtrends in crude protein (CP), ether extract (EE) and nitrogen free extract (NFE) contents of herbage along with the increase of temperature. It had a positive correlation between temperature and content of acid detergent fibre (ADF), acid detergent lignin (ADL) in herbage. In vitro digestibility of herbage decreased along with the in-crease of temperature. The results of this study indicated that climate warming significantly influence nutrient contents and in vitro digestibility of herbage grown in Qinghai-Xizang Plateau. It is suggested that the future climate warming especially the gradual rise of the night temperature could cause negative effect on herbage quality grown in Qinghai-Xizang Plateau by decreasing CP, EE, and NFE contents and increasing some indi-gestible ingredients such as crude fibre (CF), neutral detergent fibre (NDF), ADF, and ADL. This, conse-quently, decreases the ruminant assimilation ability.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The meadow ecosystem on the Qinghai-Tibetan Plateau is considered to be sensitive to climate change. An understanding of the alpine meadow ecosystem is therefore important for predicting the response of ecosystems to climate change. In this study, we use the coefficients of variation (Cv) and stability (E) obtained from the Haibei Alpine Meadow Ecosystem Research Station to characterize the ecosystem stability. The results suggest that the net primary production of the alpine meadow ecosystem was more stable (Cv = 13.18%) than annual precipitation (Cv = 16.55%) and annual mean air temperature (Cv= 28.82%). The net primary production was insensitive to either the precipitation (E = 0.0782) or air temperature (E = 0.1113). In summary, the alpine meadow ecosystem on the Qinghai-Tibetan Plateau is much stable. Comparison of alpine meadow ecosystem stability with other five natural grassland ecosystems in Israel and southern African indicates that the alpine meadow ecosystem on the Qinghai-Tibetan Plateau is the most stable ecosystem. The alpine meadow ecosystem with relatively simple structure has high stability, which indicates that community stability is not only correlated with biodiversity and community complicity but also with environmental stability. An average oscillation cycles of 3-4 years existed in annual precipitation, annual mean air temperature, net primary production and the population size of consumers at the Haibei natural ecosystem. The high stability of the alpine meadow ecosystem may be resulting also from the adaptation of the ecosystem to the alpine environment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The photosynthetic pathway of plant species collected at Menyuan, Henan, and Maduo sites, east of Tibetan Plateau, China, during the growing season were studied using stable carbon isotopes in leaves. The 232 samples leaves analyzed belonged to 161 species, 30 families, and 94 genera. The delta(13)C values (from -24.6 to -29.2 %o) indicated that all the considered species had a photosynthetic C-3 pathway. The absence of plant species with C-4 photosynthetic pathway might be due to the extremely low air temperature characterizing the Tibetan Plateau. The average delta(13)C value was significantly (p < 0.05) different between annuals and perennials at the three considered study sites. Hence the longer-lived species had greater water-use efficiency (WUE) than shorter-lived species, that is, longer-lived species are better adapted to the extreme environmental conditions of the Tibetan Plateau.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Synthesis efforts that identify patterns of ecosystem response to a suite of warming manipulations can make important contributions to climate change science. However, cross-study comparisons are impeded by the paucity of detailed analyses of how passive warming and other manipulations affect microclimate. Here we document the independent and combined effects of a common passive warming manipulation, open-top chambers (OTCs), and a simulated widespread land use, clipping, on microclimate on the Tibetan Plateau. OTCs consistently elevated growing season averaged mean daily air temperature by 1.0-2.0 degrees C, maximum daily air temperature by 2.1-7.3 degrees C and the diurnal air temperature range by 1.9-6.5 degrees C, with mixed effects on minimum daily air temperature, and mean daily soil temperature and moisture. These OTC effects on microclimate differ from reported effects of a common active warming method, infrared heating, which has more consistent effects on soil than on air temperature. There were significant interannual and intragrowing season differences in OTC effects on microclimate. For example, while OTCs had mixed effects on growing season averaged soil temperatures, OTCs consistently elevated soil temperature by approximately 1.0 degrees C early in the growing season. Nonadditive interactions between OTCs and clipping were also present: OTCs in clipped plots generally elevated air and soil temperatures more than OTCs in nonclipped plots. Moreover, site factors dynamically interacted with microclimate and with the efficacy of the OTC manipulations.These findings highlight the need to understand differential microclimate effects between warming methods, within warming method across ecosystem sites, within warming method crossed with other treatments, and within sites over various timescales. Methods, sites and scales are potential explanatory variables and covariables in climate warming experiments. Consideration of this variability among and between experimental warming studies will lead to greater understanding and better prediction of ecosystem response to anthropogenic climate warming.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

[1] The alpine meadow ecosystem on the Qinghai-Tibetan Plateau may play a significant role in the regional carbon cycle. To assess the CO2 flux and its relationship to environmental controls in the ecosystem, eddy covariance of CO2, H2O, and energy fluxes was measured with an open-path system in an alpine meadow on the plateau at an elevation of 3,250 m. Net ecosystem CO2 influx (Fc) averaged 8.8 g m(-2) day(-1) during the period from August 9 to 31, 2001, with a maximum of 15.9 g m(-2) day(-1) and a minimum of 2.3 g m(-2) day(-1). Daytime Fc averaged 16.7 g m(-2) day(-1) and ranged from 10.4 g m(-2) day(-1) to 21.7 g m(-2) day(-1) during the study period. For the same photosynthetic photon flux density (PPFD), gross CO2 uptake (Gc) was significantly higher on cloudy days than on clear days. However, mean daily Gc was higher on clear days than on cloudy days. With high PPFD, Fc decreased as air temperature increased from 10degreesC to 23degreesC. The greater the difference between daytime and nighttime air temperatures, the more the sink was strengthened. Daytime average water use efficiency of the ecosystem (WUEe) was 8.7 mg (CO2)(g H2O)(-1); WUEe values ranged from 5.8 to 15.3 mg (CO2)(g H2O)(-1). WUEe increased with the decrease in vapor pressure deficit. Daily albedo averaged 0.20, ranging from 0.19 to 0.22 during the study period, and was negatively correlated with daily Fc. Our measurements provided some of the first evidence on CO2 exchange for a temperate alpine meadow ecosystem on the Qinghai-Tibetan Plateau, which is necessary for assessing the carbon budget and carbon cycle processes for temperate grassland ecosystems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The coda of seismic waves consists of that part of the signal after the directly arrivials. In a finite medium, or in one that is strongly heterogeneous, the coda is dominated by waves which have repeatedly sampled the medium. Small changes in a medium which may have no detectable influence on the first arrivals are amplified by this repeated sampling and may thus be detectable in the coda. Because of this, coda wave is widely used in detecting micro variations in medium。 In this paper, we give a general view of the theory and application of coda wave, especially coda wave interferometry. We focus on discussing the application of coda wave interferometry on data source of active situ experiment。 First, we apply coda wave interferometry in a short time period situ experiment which last for three days. We also apply the method of coda wave interferometry in a situ experiment which last for one month. Daily circle variations of seismic velocity around the experiment site were obtained, and we also observed that the velocity variations in the experiment site have a significant correlation with the environment factors, including air temperature, barometric pressure, solid earth tide and the level of rainfall. We find that the velocity variation during this period is up to 10-3. The relationship between velocity variation and changes in air temperature, barometric pressure and solid earth tide was analyzed with least square linear fitting .The velocity has no dependence on the air temperature. But velocity has a change of 10-6--10-7 when the barometer or earth tide change per Pa. Generally, we conclude the work and results of previous researchers, and we also display our works and results. We hopes to contribute to the future research of coda wave interferometry.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The alkenone unsaturation paleothermometer is an important proxy to reconstruct water temperature, and is widely applied to reconstructing sea surface temperature in most oceanographic settings. Recent research indicates that long chain alkenone is preserved in lacustrine sediments, and the alkenone unsaturation has good relationship with mean annual temperature in studied lakes. Thus, the alkenone unsaturation could be used as a temperature proxy to reconstruct temperature in limnic systems. In this study, we analyzed long chain alkenone from the varved sediments in Lake Sihailongwan, northeastern China. Based on the counting varves, we established time scale during the past 1500 years. The distribution pattern in the sediment is similar with the previous study in lacustrine environment. The ratio of C37:4 methyl ketone to the sum of C37 alkenones is high. Based on the published temperature- alkenone unsaturation equation, we reconstructed the mean air temperature and July water temperature during the past 1500 years. Three major cold periods are in AD560-950, AD 1540-1600 and AD1800-1920. Three major warm periods are AD450-550, AD 950-1400 and AD 1600-1800. The Medieval Warm Period was a significant warm periods. However, the traditional “Little Ice Age” was not a persistent cold period, and interrupted by relative longer warm period. The temperature variations in this study show a general similar pattern with the summer temperature reconstruction from Shihua Cave and the winter temperature from historical documents. The temperature variations from long chain alknone record show a good agreement with solar activity (10Be data from ice core and sunspot number from tree rings). It may suggest that solar activity is most important forcing in the studied area.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The soil respiration and net ecosystem productivity of Kobresia littledalei meadow ecosystem was investigated at Dangxiong grassland station, one grassland field station of Lhasa Plateau Ecosystem Research Station. Soil respiration and soil heterotrophic respiration were measured at the same time by using Li6400-09 chamber in growing season of year 2004. The response of soil respiration and its components, i.e. microbial heterotrophic respiration and root respiration to biotic and abiotic factors were addressed. We studied the daily and seasonal variation on Net Ecosystem carbon Exchange (NEE) measured by eddy covariance equipments and then the regression models between the NEE and the soil temperature. Based on the researches, we analyzed the seasonal variation in grass biomass and estimated NEE combined the Net Ecosystem Productivity with heterogeneous respiration and then assessed the whether the area is carbon source or carbon sink. 1.Above-ground biomass was accumulated since the grass growth started from May; On early September the biomass reached maximum and then decreased. The aboveground net primary production (ANPP) was 150.88 g m~" in 2004. The under-ground biomass reached maximum when the aboveground start to die back. Over 80% of the grass root distributed at the soil depth from 0 to 20cm. The underground NPP was 1235.04 g m"2.. Therefore annual NPP wasl.385X103kg ha"1, i.e.6236.6 kg C ha"1. 2. The daily variation of soil respiration showed single peak curve with maximum mostly at noon and minimum 4:00-6:00 am. Daily variations were greater in June, July and August than those in September and October. Soil respiration had strong correlation with soil temperature at 5cm depth while had weaker correlation with soil moisture, air temperature, surface soil temperature, and so on. But since early September the soil respiration had a obviously correlation with soil moisture at 5cm depth. Biomass had a obviously linearity correlation with soil respiration at 30th June, 20th August, and the daytime of 27th September except at 23lh October and at nighttime of 27th September. We established the soil respiration responding to the soil temperature and to estimate the respiration variation during monsoon season (from June through August) and dry season (May, September and October). The regression between soil respiration and 5cm soil temperature were: monsoon season (June through August), Y=0.592expfl()932\ By estimating , the soil daily respiration in monsoon season is 7.798gCO2m"2 and total soil respiration is 717.44 gCC^m" , and the value of Cho is 2.54; dry season (May, September and October), Y=0.34exp°'085\ the soil daily respiration is 3.355gCO2m~2 and total soil respiration is 308.61 gCC^m", and the value of Cho is 2.34. So the total soil respiration in the grown season (From May to October) is 1026.1 g CO2IT1"2. 3. Soil heterogeneous respiration had a strong correlation with soil temperature especially with soil temperature at 5cm depth. The variation range in soil heterogeneous respiration was widely. The regression between soil heterogeneous respiration and 5cm soil temperature is: monsoon season, Y=0.106exp ' 3x; dry season, Y=0.18exp°"0833x.By estimating total soil heterotrophic respiration in monsoon season is 219.6 gCC^m"2, and the value of Cho is 3.78; While total soil heterogeneous respiration in dry season is 286.2 gCCbm"2, and the value of Cho is 2.3. The total soil heterotrophic respiration of the year is 1379.4kg C ha"1. 4. We estimated the root respiration through the balance between soil respiration and the soil heterotrophic respiration. The contribution of root respiration to total respiration was different during different period: re-greening period 48%; growing period 69%; die-back period 48%. 5. The Ecosystem respiration was relatively strong from May to October, and of which the proportion in total was 97.4%.The total respiration of Ecosystem was 369.6 g CO2 m" .we got the model of grass respiration respond to the soil temperature at 5cm depth and then estimated the daytime grass respiration, plus the nighttime NEE and daytime soil respiration. But when we estimated the grass respiration, we found the result was negative, so the estimating value in this way was not close. 6. The estimating of carbon pool or carbon sink. The NPP minus the soil heterogeneous respiration was the NEE, and it was 4857.3kg C o ha"1, which indicated that the area was the carbon sink.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Meteorological Section at the scientific camp 2009–2010 conducted a series of meteorological measurements in the region of Biała Góra. The exploration area is located about 2 km east of Międzyzdroje, at the research station of the AMU Faculty of Geographical and Geological Sciences. Members of the section made measurements in the six selected points. The location of points had to reflect the specifics of the area (from the beach to the car park at the research station). The section focused on three basic measurements: air temperature (2009–2010), relative humidity (2009–2010) and atmospheric pressure (2009). This article aims to analyse a topoclimate section of cliff coast in the Wolin National Park. The compilation recognised the impact of various land surfaces, sea and altitude on the variability of air temperature and relative humidity. It notes the varied course of the daily meteorological elements analysed, which is directly related to the value of radiation balance dependent upon the intensity of direct solar radiation. In this article, particular emphasis is applied to the analysis of temperature amplitudes and humidity at different measuring points.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Existing Building/Energy Management Systems (BMS/EMS) fail to convey holistic performance to the building manager. A 20% reduction in energy consumption can be achieved by efficiently operated buildings compared with current practice. However, in the majority of buildings, occupant comfort and energy consumption analysis is primarily restricted by available sensor and meter data. Installation of a continuous monitoring process can significantly improve the building systems’ performance. We present WSN-BMDS, an IP-based wireless sensor network building monitoring and diagnostic system. The main focus of WSN-BMDS is to obtain much higher degree of information about the building operation then current BMSs are able to provide. Our system integrates a heterogeneous set of wireless sensor nodes with IEEE 802.11 backbone routers and the Global Sensor Network (GSN) web server. Sensing data is stored in a database at the back office via UDP protocol and can be access over the Internet using GSN. Through this demonstration, we show that WSN-BMDS provides accurate measurements of air-temperature, air-humidity, light, and energy consumption for particular rooms in our target building. Our interactive graphical user interface provides a user-friendly environment showing live network topology, monitor network statistics, and run-time management actions on the network. We also demonstrate actuation by changing the artificial light level in one of the rooms.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this study was to develop a methodology, based on satellite remote sensing, to estimate the vegetation Start of Season (SOS) across the whole island of Ireland on an annual basis. This growing body of research is known as Land Surface Phenology (LSP) monitoring. The SOS was estimated for each year from a 7-year time series of 10-day composited, 1.2 km reduced resolution MERIS Global Vegetation Index (MGVI) data from 2003 to 2009, using the time series analysis software, TIMESAT. The selection of a 10-day composite period was guided by in-situ observations of leaf unfolding and cloud cover at representative point locations on the island. The MGVI time series was smoothed and the SOS metric extracted at a point corresponding to 20% of the seasonal MGVI amplitude. The SOS metric was extracted on a per pixel basis and gridded for national scale coverage. There were consistent spatial patterns in the SOS grids which were replicated on an annual basis and were qualitatively linked to variation in landcover. Analysis revealed that three statistically separable groups of CORINE Land Cover (CLC) classes could be derived from differences in the SOS, namely agricultural and forest land cover types, peat bogs, and natural and semi-natural vegetation types. These groups demonstrated that managed vegetation, e.g. pastures has a significantly earlier SOS than in unmanaged vegetation e.g. natural grasslands. There was also interannual spatio-temporal variability in the SOS. Such variability was highlighted in a series of anomaly grids showing variation from the 7-year mean SOS. An initial climate analysis indicated that an anomalously cold winter and spring in 2005/2006, linked to a negative North Atlantic Oscillation index value, delayed the 2006 SOS countrywide, while in other years the SOS anomalies showed more complex variation. A correlation study using air temperature as a climate variable revealed the spatial complexity of the air temperature-SOS relationship across the Republic of Ireland as the timing of maximum correlation varied from November to April depending on location. The SOS was found to occur earlier due to warmer winters in the Southeast while it was later with warmer winters in the Northwest. The inverse pattern emerged in the spatial patterns of the spring correlates. This contrasting pattern would appear to be linked to vegetation management as arable cropping is typically practiced in the southeast while there is mixed agriculture and mostly pastures to the west. Therefore, land use as well as air temperature appears to be an important determinant of national scale patterns in the SOS. The TIMESAT tool formed a crucial component of the estimation of SOS across the country in all seven years as it minimised the negative impact of noise and data dropouts in the MGVI time series by applying a smoothing algorithm. The extracted SOS metric was sensitive to temporal and spatial variation in land surface vegetation seasonality while the spatial patterns in the gridded SOS estimates aligned with those in landcover type. The methodology can be extended for a longer time series of FAPAR as MERIS will be replaced by the ESA Sentinel mission in 2013, while the availability of full resolution (300m) MERIS FAPAR and equivalent sensor products holds the possibility of monitoring finer scale seasonality variation. This study has shown the utility of the SOS metric as an indicator of spatiotemporal variability in vegetation phenology, as well as a correlate of other environmental variables such as air temperature. However, the satellite-based method is not seen as a replacement of ground-based observations, but rather as a complementary approach to studying vegetation phenology at the national scale. In future, the method can be extended to extract other metrics of the seasonal cycle in order to gain a more comprehensive view of seasonal vegetation development.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis is based on studies of Formica lugubris from 1972-1975. While this species' range is diminishing in Ireland, the nests are quite common in the State plantations of South Tipperary. It is not certain that the species is indigenous. Above-ground activity occurs from late-February to the end of October; foraging begins in April. Two territorial "spring-battles" between neighbouring nests are described. Most active nests produced alatae of both sexes and flights were observed on successive June mornings above l7.5°C air temperature. Both polygyny and polycaly seem to be rare. Where the nests occur commonly, the recorded densities are similar to those reported from the continent. Most nests persisted at the same site since 1973. The nest-sites are described by recording an array of nest, soil, tree, vegetation and location variables at each site. Pinus sylvestris is the most important overhead tree. Nests seem to be the same age as their surrounding plantation and reach a maximum of c. 30 years. Nearest-neighbour analysis suggests the sites are overdispersed. Forager route-fidelity was studied and long-term absence from the route, anaesthetization and "removal" of an aphid tree had little effect on this fidelity. There were no identifiable groups of workers specifically honeydew or prey-carriers. Size-duty relationships of workers participating in adult transport are described. Foraging rhythms were studied on representative days: the numbers foraging were linearly related to temperature. Route-traffic passed randomly and an average foraging trip lasted c. four hours. Annual food intake to a nest with 25 000 foragers was estimated at approximately 75 kg honeydew and 2 million prey-items. Forager-numbers and colony-size were estimated using the capture-mark - recapture method: paint marking was used for the forager estimate and an interval radiophosphorus mark, detected by autoradiography, was used for the colony-size estimate. The aphids attended by lugubris and the nest myrmecophiles are recorded.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The comparison of observed global mean surface air temperature (GMT) change to the mean change simulated by climate models has received much public and scientific attention. For a given global warming signal produced by a climate model ensemble, there exists an envelope of GMT values representing the range of possible unforced states of the climate system (the Envelope of Unforced Noise; EUN). Typically, the EUN is derived from climate models themselves, but climate models might not accurately simulate the correct characteristics of unforced GMT variability. Here, we simulate a new, empirical, EUN that is based on instrumental and reconstructed surface temperature records. We compare the forced GMT signal produced by climate models to observations while noting the range of GMT values provided by the empirical EUN. We find that the empirical EUN is wide enough so that the interdecadal variability in the rate of global warming over the 20(th) century does not necessarily require corresponding variability in the rate-of-increase of the forced signal. The empirical EUN also indicates that the reduced GMT warming over the past decade or so is still consistent with a middle emission scenario's forced signal, but is likely inconsistent with the steepest emission scenario's forced signal.