986 resultados para Air Particulate Matter
Resumo:
The inhalation of airborne pollutants, such as asbestos or silica, is linked to inflammation of the lung, fibrosis, and lung cancer. How the presence of pathogenic dust is recognized and how chronic inflammatory diseases are triggered are poorly understood. Here, we show that asbestos and silica are sensed by the Nalp3 inflammasome, whose subsequent activation leads to interleukin-1beta secretion. Inflammasome activation is triggered by reactive oxygen species, which are generated by a NADPH oxidase upon particle phagocytosis. (NADPH is the reduced form of nicotinamide adenine dinucleotide phosphate.) In a model of asbestos inhalation, Nalp3-/- mice showed diminished recruitment of inflammatory cells to the lungs, paralleled by lower cytokine production. Our findings implicate the Nalp3 inflammasome in particulate matter-related pulmonary diseases and support its role as a major proinflammatory "danger" receptor
Resumo:
A Knudsen flow reactor has been used to quantify functional groups on the surface of seven different types of combustion particle samples: 3 amorphous carbons (FS 101, Printex 60, FW 2), 2 flame soots (hexane soot generated from a rich and a lean diffusion flame), and 2 Diesel particles (SRM 2975, Diesel soot recovered from a Diesel particulate filter). The technique is based on a heterogeneous titration reaction between a probe gas and a specific functional group on the particle surface. Six probe gases have been selected for the quantification of important functional groups: N(CH3)3 for the titration of acidic sites, NH2OH for carbonyl functions of aldehydes and ketones, CF3COOH and HCl for basic sites of different strength, O3 and NO2 for oxidizable groups. The limit of detection was generally well below 1% of a formal monolayer of adsorbed probe gas. Results obtained with N(CH3)3 were higher for the FW 2 amorphous carbon (post-oxidized sample, according to the manufacturer) and the Diesel particles (between 5.2·10 13 and 5.8·10 13 molecule/cm2), indicating a higher state of oxidation than for the other samples (between 1.3·10 12 and 3.7·10 12 molecule/cm2). The ratio of uptakes of CF3COOH and HCl inferred the presence of basic oxides on the particle surface, owing to the larger stability of the acetate compared to the chloride counter ion in the resulting pyrylium salt. The reactivity of the FS 101 amorphous carbon (3.7·10 15 molecule/cm2) and the hexane flame soot (between 1.9·10 15 and 2.7·10 15 molecule/cm2) towards O3 was very high, indicating the presence of a huge amount of oxidizable or reduced groups on the surface of these samples. Besides the quantification of surface functional groups, the kinetics of reactions between particles and probe gases has also been studied. The uptake coefficient γ0 was roughly correlated with the amount of probe gas taken up by the samples. Indeed, the presence of a high density of functional groups led to fast uptake of the probe gas. These different findings indicate that the particle surface appeared multi-functional, with the simultaneous presence of antagonistic functional groups which do not undergo internal chemical reactions, such as acid-base neutralization. Results also point to important differences in the surface reactivity of the samples, depending on the combustion conditions. The relative distribution of the surface functional groups may be a useful indicator for the state of oxidation and the reactivity of the particle surface.
Resumo:
Epidemiological studies in urban areas have linked increasing respiratory and cardiovascular pathologies with atmospheric particulate matter (PM) from anthropic activities. However, the biological fate of metal-rich PM industrial emissions in urban areas of developed countries remains understudied. Lead toxicity and bioaccessibility assessments were therefore performed on emissions from a lead recycling plant, using complementary chemical acellular tests and toxicological assays, as a function of PM size (PM(10-2.5), PM(2.5-1) and PM(1)) and origin (furnace, refining and channeled emissions). Process PM displayed differences in metal content, granulometry, and percentage of inhalable fraction as a function of their origin. Lead gastric bioaccessibility was relatively low (maximum 25%) versus previous studies; although, because of high total lead concentrations, significant metal quantities were solubilized in simulated gastrointestinal fluids. Regardless of origin, the finest PM(1) particles induced the most significant pro-inflammatory response in human bronchial epithelial cells. Moreover, this biological response correlated with pro-oxidant potential assay results, suggesting some biological predictive value for acellular tests. Pulmonary effects from lead-rich PM could be driven by thiol complexation with either lead ions or directly on the particulate surface. Finally, health concern of PM was discussed on the basis of pro-inflammatory effects, accellular test results, and PM size distribution.
Resumo:
Miniature diffusion size classifiers (miniDiSC) are novel handheld devices to measure ultrafine particles (UFP). UFP have been linked to the development of cardiovascular and pulmonary diseases; thus, detection and quantification of these particles are important for evaluating their potential health hazards. As part of the UFP exposure assessments of highwaymaintenance workers in western Switzerland, we compared a miniDiSC with a portable condensation particle counter (P-TRAK). In addition, we performed stationary measurements with a miniDiSC and a scanning mobility particle sizer (SMPS) at a site immediately adjacent to a highway. Measurements with miniDiSC and P-TRAK correlated well (correlation of r = 0.84) but average particle numbers of the miniDiSC were 30%âeuro"60% higher. This difference was significantly increased for mean particle diameters below 40 nm. The correlation between theminiDiSC and the SMPSduring stationary measurements was very high (r = 0.98) although particle numbers from the miniDiSC were 30% lower. Differences between the three devices were attributed to the different cutoff diameters for detection. Correction for this size dependent effect led to very similar results across all counters.We did not observe any significant influence of other particle characteristics. Our results suggest that the miniDiSC provides accurate particle number concentrations and geometric mean diameters at traffic-influenced sites, making it a useful tool for personal exposure assessment in such settings.
Resumo:
A Knudsen flow reactor has been used to quantify surface functional groups on aerosols collected in the field. This technique is based on a heterogeneous titration reaction between a probe gas and a specific functional group on the particle surface. In the first part of this work, the reactivity of different probe gases on laboratory-generated aerosols (limonene SOA, Pb(NO3)2, Cd(NO3)2) and diesel reference soot (SRM 2975) has been studied. Five probe gases have been selected for the quantitative determination of important functional groups: N(CH3)3 (for the titration of acidic sites), NH2OH (for carbonyl functions), CF3COOH and HCl (for basic sites of different strength), and O3 (for oxidizable groups). The second part describes a field campaign that has been undertaken in several bus depots in Switzerland, where ambient fine and ultrafine particles were collected on suitable filters and quantitatively investigated using the Knudsen flow reactor. Results point to important differences in the surface reactivity of ambient particles, depending on the sampling site and season. The particle surface appears to be multi-functional, with the simultaneous presence of antagonistic functional groups which do not undergo internal chemical reactions, such as acid-base neutralization. Results also indicate that the surface of ambient particles was characterized by a high density of carbonyl functions (reactivity towards NH2OH probe in the range 0.26-6 formal molecular monolayers) and a low density of acidic sites (reactivity towards N(CH3)3 probe in the range 0.01-0.20 formal molecular monolayer). Kinetic parameters point to fast redox reactions (uptake coefficient ?0>10-3 for O3 probe) and slow acid-base reactions (?0<10-4 for N(CH3)3 probe) on the particle surface. [Authors]
Resumo:
BACKGROUND: Exposure to particles (PM) induces adverse health effects (cancer, cardiovascular and pulmonary diseases). A key-role in these adverse effects seems to be played by oxidative stress, which is an excess of reactive oxygen species relative to the amount of reducing species (including antioxidants), the first line of defense against reactive oxygen species. The aim of this study was to document the oxidative stress caused by exposure to respirable particles in vivo, and to test whether exposed workers presented changes in their urinary levels for reducing species.METHODS: Bus depot workers (n = 32) exposed to particles and pollutants (respirable PM4, organic and elemental carbon, particulate metal content, polycyclic aromatic hydrocarbons, NOx, O3) were surveyed over two consecutive days. We collected urine samples before and after each shift, and quantified an oxidative stress biomarker (8-hydroxy-2'-deoxyguanosine), the reducing capacity and a biomarker of PAH exposure (1-hydroxypyrene). We used a linear mixed model to test for associations between the oxidative stress status of the workers and their particle exposure as well as with their urinary level of reducing species.RESULTS: Workers were exposed to low levels of respirable PM4 (range 25-71 μg/m3). However, urinary levels of 8-hydroxy-2'-deoxyguanosine increased significantly within each shift and between both days for non-smokers. The between-day increase was significantly correlated (p < 0.001) with the concentrations of organic carbon, NOx, and the particulate copper content. The within-shift increase in 8OHdG was highly correlated to an increase of the urinary reducing capacity (Spearman ρ = 0.59, p < 0.0001).CONCLUSIONS: These findings confirm that exposure to components associated to respirable particulate matter causes a systemic oxidative stress, as measured with the urinary 8OHdG. The strong association observed between urinary 8OHdG with the reducing capacity is suggestive of protective or other mechanisms, including circadian effects. Additional investigations should be performed to understand these observations.
Resumo:
Particle fluxes (including major components and grain size), and oceanographic parameters (near-bottom water temperature, current speed and suspended sediment concentration) were measured along the Cap de Creus submarine canyon in the Gulf of Lions (GoL; NW Mediterranean Sea) during two consecutive winter-spring periods (2009 2010 and 2010 2011). The comparison of data obtained with the measurements of meteorological and hydrological parameters (wind speed, turbulent heat flux, river discharge) have shown the important role of atmospheric forcings in transporting particulate matter through the submarine canyon and towards the deep sea. Indeed, atmospheric forcing during 2009 2010 and 2010 2011 winter months showed differences in both intensity and persistence that led to distinct oceanographic responses. Persistent dry northern winds caused strong heat losses (14.2 × 103 W m−2) in winter 2009 2010 that triggered a pronounced sea surface cooling compared to winter 2010 2011 (1.6 × 103 W m−2 lower). As a consequence, a large volume of dense shelf water formed in winter 2009 2010, which cascaded at high speed (up to ∼1 m s−1) down Cap de Creus Canyon as measured by a current-meter in the head of the canyon. The lower heat losses recorded in winter 2010 2011, together with an increased river discharge, resulted in lowered density waters over the shelf, thus preventing the formation and downslope transport of dense shelf water. High total mass fluxes (up to 84.9 g m−2 d−1) recorded in winter-spring 2009 2010 indicate that dense shelf water cascading resuspended and transported sediments at least down to the middle canyon. Sediment fluxes were lower (28.9 g m−2 d−1) under the quieter conditions of winter 2010 2011. The dominance of the lithogenic fraction in mass fluxes during the two winter-spring periods points to a resuspension origin for most of the particles transported down canyon. The variability in organic matter and opal contents relates to seasonally controlled inputs associated with the plankton spring bloom during March and April of both years.
Resumo:
The purpose of this project is to develop a management plan to address the City of Alta’s stormwater runoff. Currently, there is no management plan and the city is growing, so there are increased runoff problems from both residential and industrial sources. A large assortment of pollutants flow from these areas, examples include various forms of sediment, paper, plastic, gravel and metal as well as less visible potentially toxic pollution from lawns, streets, gas stations and other commercial and industrial areas. The goal for this project is to construct two infiltration/detention basins to protect water quality and reduce the peak volume of the City of Alta’s urban runoff. Each basin is designed with two functions: Control gully erosion and surface erosion with detention, while incorporating water quality through infiltration. The downstream erosion control provided by detaining runoff will reduce sediment delivery to Powell Creek and protect downstream agricultural land from urban runoff. The infiltration features designed into the basins will capture pollutants commonly associated with urban stormwater runoff such as: sediment, sand, gravel hydrocarbons, particulate matter, heavy metals, and nutrients.
Resumo:
The complex chemical and physical nature of combustion and secondary organic aerosols (SOAs) in general precludes the complete characterization of both bulk and interfacial components. The bulk composition reveals the history of the growth process and therefore the source region, whereas the interface controls--to a large extent--the interaction with gases, biological membranes, and solid supports. We summarize the development of a soft interrogation technique, using heterogeneous chemistry, for the interfacial functional groups of selected probe gases [N(CH(3))(3), NH(2)OH, CF(3)COOH, HCl, O(3), NO(2)] of different reactivity. The technique reveals the identity and density of surface functional groups. Examples include acidic and basic sites, olefinic and polycyclic aromatic hydrocarbon (PAH) sites, and partially and completely oxidized surface sites. We report on the surface composition and oxidation states of laboratory-generated aerosols and of aerosols sampled in several bus depots. In the latter case, the biomarker 8-hydroxy-2'-deoxyguanosine, signaling oxidative stress caused by aerosol exposure, was isolated. The increase in biomarker levels over a working day is correlated with the surface density N(i)(O3) of olefinic and/or PAH sites obtained from O(3) uptakes as well as with the initial uptake coefficient, γ(0), of five probe gases used in the field. This correlation with γ(0) suggests the idea of competing pathways occurring at the interface of the aerosol particles between the generation of reactive oxygen species (ROS) responsible for oxidative stress and cellular antioxidants.
Resumo:
Diplomityö on osa YTI-tutkimuskeskuksessa vuosina 2002 - 2004 toteutettavaa Jätekompostit rakeiksi tuhkaseostuksella -käyttöarvon parantaminen -projektia. Työssä tutkittiin Etelä-Savon Energia Oy:n Pursialan voimalaitoksen lentotuhkan fraktioimista voimalaitoksen nykyisellä 3-kenttäisellä sähkösuodattimella ja pilot-mittakaavaisella Ion Blast -koelaitteistolla. Sähkösuodattimen koeajojen aikana muuteltiin sen ajotapaa mm. CBO -suhteen ja maksimijänniteasetuksen avulla. Ion Blast -koelaitteistolla tutkittiin mahdollisuuksia voimalaitoksen lentotuhkan puhdistamiseksi raskasmetalleista. Lentotuhkan hyötykäyttöä vaikeuttaa sen raskasmetallipitoisuuksien suuri vaihtelu. Ongelmallisin raskasmetalli puuperäisessä lentotuhkassa on kadmium, jonka lannoitelainsäädännön raja-arvo on tällä hetkellä 3 mg/kg. Sähkösuodattimella tehtyjen fraktiointikokeiden perusteella voidaan todeta raskasmetallipitoisuuksien olevan pienimmillään sähkösuodattimen 1-kentässä ja suurimmillaan 3-kentässä. Tämä johtuu siitä, että 1-kenttään kerääntyy hiukkaskooltaan suurimmat lentotuhkahiukkaset ja 3-kentässä on mukana enemmän pienhiukkasia sisältävää tuhkaa. Lannoitteeksi menevän tuhkan Cd-pitoisuutta voidaan vähentää parhaimmillaan jopa 70 % sähkösuodattimella fraktioimalla. Muiden raskasmetallien pitoisuudet eivät vähene aivan yhtä paljon. Sähkösuodattimella voidaan tulosten perusteella fraktioida lentotuhkaa. Sähkösuodattimella ei kuitenkaan voida varmasti saavuttaa alle 3 mg/kg Cd-pitoisuuksia polttoaineen laadunvaihtelun vuoksi. Ion Blast -koelaitteiston tulokset tukevat sähkösuodattimella tehtyjä kokeita. Erottimen jännitteen kasvaessa raskasmetalleja sisältävien hiukkasten erotusaste kasvaa. Ion Blast -laitteistolla tehdyissä kokeissa myös Cd-pitoisuus oli korkeimmillaan pienimmän raeluokan hiukkasissa ja laski sitten raeluokan suurentuessa. Ion Blast -laitteisto ei kuitenkaan sellaisenaan ole hyvä fraktiointiin. Se on liian tehokas, jolloin se puhdistaa tehokkaasti myös raskasmetalleja sisältävät pienhiukkaset. Jos laitetta aiotaan käyttää fraktiointiin, tulisi sen rakennetta muuttaa.
Resumo:
Abstract. The deep outer margin of the Gulf of Lions and the adjacent basin, in the western Mediterranean Sea, are regularly impacted by open-ocean convection, a major hydrodynamic event responsible for the ventilation of the deep water in the western Mediterranean Basin. However, the impact of open-ocean convection on the flux and transport of particulate matter remains poorly understood. The variability of water mass properties (i.e., temperature and salinity), currents, and particle fluxes were monitored between September 2007 and April 2009 at five instrumented mooring lines deployed between 2050 and 2350-m depth in the deepest continental margin and adjacent basin. Four of the lines followed a NW-SE transect, while the fifth one was located on a sediment wave field to the west. The results of the main, central line SC2350 ("LION") located at 42 02.50 N, 4 410 E, at 2350-m depth, show that open-ocean convection reached midwater depth ( 1000-m depth) during winter 2007-2008, and reached the seabed ( 2350-m depth) during winter 2008-2009. Horizontal currents were unusually strong with speeds up to 39 cm s−1 during winter 2008-2009. The measurements at all 5 different locations indicate that mid-depth and near-bottom currents and particle fluxes gave relatively consistent values of similar magnitude across the study area except during winter 2008-2009, when near-bottom fluxes abruptly increased by one to two orders of magnitude. Particulate organic carbon contents, which generally vary between 3 and 5 %, were abnormally low ( 1 %) during winter 2008-2009 and approached those observed in surface sediments (0.6 %). Turbidity profiles made in the region demonstrated the existence of a bottom nepheloid layer, several hundred meters thick, and related to the resuspension of bottom sediments. These observations support the view that open-ocean deep convection events in the Gulf of Lions can cause significant remobilization of sediments in the deep outer margin and the basin, with a subsequent alteration of the seabed likely impacting the functioning of the deep-sea ecosystem.
Resumo:
The oxidative potential (OP) of particulate matter has been proposed as a toxicologically relevant metric. This concept is already frequently used for hazard characterization of ambient particles but it is still seldom applied in the occupational field. The objective of this study was to assess the OP in two different types of workplaces and to investigate the relationship between the OP and the physicochemical characteristics of the collected particles. At a toll station, at the entrance of a tunnel ('Tunnel' site), and at three different mechanical yards ('Depot' sites), we assessed particle mass (PM4 and PM2.5 and size distribution), number and surface area, organic and elemental carbon, polycyclic aromatic hydrocarbon (PAH), and four quinones as well as iron and copper concentration. The OP was determined directly on filters without extraction by using the dithiothreitol assay (DTT assay-OP(DTT)). The averaged mass concentration of respirable particles (PM4) at the Tunnel site was about twice the one at the Depot sites (173±103 and 90±36 µg m(-3), respectively), whereas the OP(DTT) was practically identical for all the sites (10.6±7.2 pmol DTT min(-1) μg(-1) at the Tunnel site; 10.4±4.6 pmol DTT min(-1) μg(-1) at the Depot sites). The OP(DTT) of PM4 was mostly present on the smallest PM2.5 fraction (OP(DTT) PM2.5: 10.2±8.1 pmol DTT min(-1) μg(-1); OP(DTT) PM4: 10.5±5.8 pmol DTT min(-1) μg(-1) for all sites), suggesting the presence of redox inactive components in the PM2.5-4 fraction. Although the reactivity was similar at the Tunnel and Depot sites irrespective of the metric chosen (OP(DTT) µg(-1) or OP(DTT) m(-3)), the chemicals associated with OP(DTT) were different between the two types of workplaces. The organic carbon, quinones, and/or metal content (Fe, Cu) were strongly associated with the DTT reactivity at the Tunnel site whereas only Fe and PAH were associated (positively and negatively, respectively) with this reactivity at the Depot sites. These results demonstrate the feasibility of measuring of the OP(DTT) in occupational environments and suggest that the particulate OP(DTT) is integrative of different physicochemical properties. This parameter could be a potentially useful exposure proxy for investigating particle exposure-related oxidative stress and its consequences. Further research is needed mostly to demonstrate the association of OP(DTT) with relevant oxidative endpoints in humans exposed to particles.
Resumo:
It was identified and quantified several organic compounds in the atmosphere of a site into Amazon Basin with high impact of biomass burning emission. It was important to know the particulate matter composition with respect to n-alkanes and PAH associated with the particulate matter because they provided indication on the main sources contributing to airborne particles, the contribution of natural vs. man-made emission and the aging of the particles. The main classes of compounds observed were n-alkanes, PAH and nitro-PAH. It was observed the formation of nitro-PAH from photochemical reactions. The aerosol mass concentration is mainly associated with fluoranthene, pyrene and benzo(ghi)perylene. Environmental and direct emissions samples (flaming and smoldering) were collected and analysed.