990 resultados para Agrobacterium-mediated transformation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

本文报道农杆菌转化毛白杨的高效遗传转化系统的建立。所用农杆菌菌株为:1.发根农杆菌R1000,含有Ri质粒pRiA4b。2.发根农杆菌R1000(pTVK85),是菌株R1000中除含有pRiA4b外,并兼容一个带有超致病区(Supervirulent region)的质粒pTVK85。3.根癌农杆菌C58C1(pBZ693),其质粒pBZ693是改建过的Ti质粒,载有T-DNA的基因1和基因2。将毛白杨外植体分别与上述菌株在MS+0.5ppm激动素培养基上先培养2天后,转移至MS+500ppm氨噻肟头胞霉素的培养基上。一个星期后即有根从外植体上产生。根癌农杆菌诱导的根形态明显与发根农杆菌诱导的根不同。R1000(pTVK85)诱导生根的外植体可占供试外植体总数的59%。转化的根有的可自发地形成不定芽或愈伤组织。通过培养基中激素的调整,可使转化的根系统100%再生出不定芽,并可由这些不定芽得到完整植株。转化植株的各克隆之间表型差异很大。有的地上部形态正常,仅根系与未转化植株有所不同。有的节间短、叶片多、顶端优势弱、根系发达而多发枝、多根毛。但所有转化植株皆无皱叶现象,其叶片形态与正常植株无异。普遍地有根生于植株的培养基平面以上部分的现象。取三个克隆的植株进行Southern杂交,其中两个为杂交阳性,表明确已被转化;另一个克隆为杂交阴性。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

利用发根农杆菌(Agrobacterium rhizogenes)1601,1000,1500,15834,A4,均成功地转化了中药青蒿(Artemisia annua L.)并且建立了pRi1601,pRi15834,pRiA4诱导的发根培养。pRi1601,pRi15834的发根诱导率比其它质粒高。太老或太幼的叶片不利子发根的诱导;发根主要从叶脉的伤口处萌发;带顶芽或带侧芽的叶片容易诱导根,但不一定是发根。光照有利于发根的诱导和发根的生长。以每个发根的“绝对生长速率”(Gtowth Ratio,GR)和绝对“侧根”数量(Number of Side Roots,NSR),通过大量的发根系的筛选,建立了8个发根系,1601-L-1, 1601-L-2, 1601-L-3, 1601-L-4, 15834-L-1, 1601-P-I, 16 01-P-2,15834-L-2。Southern分子检测表明,160l-1-1,1801-L-2, 1601-L-3,1601-L-4,1601-P-1,1601-P-2均为转化子。8个建立的发根系之间无论生长或者QHS的合成存在明显的差异。比较光/暗(16/8hrs),25℃条件下培养的16 01-L-1,1601-L-2,1601-L-3,1601-L-4,1601-P-l,和1601-P-2,其中16 01-L-3的生长最快,160l-L-1的生长最慢;但是,1601-L-1的QHS的含量最高(可达1. 048%),1601-1-3的QHS的含量最低。160Z-L-3,15834 -L-1和2583:1-L-2的生长速率相差不大。用盛有l000mLMS液体培养基的3000mL的锥形瓶扩大培养1601-L -3,15834-L-1和15834-L-2,转速为ll0rlpm,培养过程中发根容易形成发根球(Hairy Root Balis,HRB),HRB的形成严重影响发根的生长和QHs的合成,HpLC分析表明扩大培养发根中QHS的含量比较低。 改变MS基本培养基中的无机离子的浓度,研究不同无机离子对发根生长和QHS的合成的影响。 l、KN03为18.79×10-3M时有利于1601- L-1生长,为14. 84×10-3M时有利于QHS的合成。NH-4N0-3浓度在10.93-12. 49×10—3M范围内有利于1601-L-1生长,在0-20.62×10-3M范围内对QHS的合成影响不大,大于20. 62×lO-3M不利QHS的合成。培养基中NH-4+/N0-3-比值为0. 37-0. 4-0.52:1时有利于发根的生长,比值为0.52 - 0.58:1时有利于QHS的合成。 2、H-2P0-4-浓度为2.498×10-3M时有利于发根的生长在0-2. 498×l0-3M范围内,随着浓度的提高,促进发根的生长。培养基中的H2P4 -的浓度在0-1.249×lO-3M的范围内,随着浓度的提高,促进QHS的合成,为1.249×10-3M时QHS的含量最高。 3、培养基中最适16 01-L-1生长的Ca-2+浓度为0.198- 0.766×10-3M,大于或小于该浓度范围,显著地抑制发根的生长。但是,在0-3.695×10-3M范围内,随着培养基中Ca-2+浓度提高,促进QHS的合成,最适Ca-2+浓度为3.695×l0-3M。 4、培养基中不加Mg-2+时,完全抑制发根生长,在0. 142×10-3M-7.506×l0-3M浓度范围内,对发根生长影响没有明显的差别。但是,HPLC和UV分析发根中QHS含量,培养基中不加Mg-2+时,发根中QHS含量最高。 5、培养基中的Fe-2+浓度在0. 25 -1.0×10-3M范围内,同时有利于16 01- L-1的生长和QHS的形成。 6、培养基中最适合予16 01- L-3生长的KI浓度为2.5ppm,大于或小予该浓度均显著地抑制发根的生长,培养基中加入KI明显地降低发根中的QHS的含量。 7、H2BO3对l601-L-l生长影响不大,HPLC分析QHS的含量,培养基中的H3BO3浓度为100ppm和400ppm,QHS的含量分别为1.69mg/g和1.80mg/g(DW)。 8、Cu-2+对1601-L-3的生长影响显著,最适合1601-L-3生长的Cu-2+浓度为1.00ppm,在0 -1.00ppm的浓度范围内,随着培养基中的Cu+浓度的提高,发根的生物量不断增加。培养基中QHS合成的最适Cu2+浓度为0.05ppm,大于或小于该浓度均显著地抑制发根中QHS的合成。 比较光培养和暗培养对发根生长的影响,结果表明光照明显地促进1601-L-l的生长,暗培养明显不利于发根的生长。最适合于发根生长的温度为25℃,大于35℃显著地抑制发根的生长,影响发根的根尖细胞的正常分裂。 改变培养基中的蔗糖浓度和在发根培养的不同时期给培养基中添加蔗糖,试验结果表明蔗糖作为碳源对1601-L-3和1601-L-1的生长具有显著的影响。 (1)培养基中缺少蔗糖显著地抑制发根的生长。 (2)发根培养的前5天时间内,蔗糖浓度为30- 60glL昀培养基最有利于发根的生长,50glL的培养基中的发根生长最快,培养基中的蔗糖浓度大于60g/L小于30g/L时,发根的生物量增加较少。 (3)发根培养至第15天时,蔗糖浓度为60g/L的培养基最有利予发根的生物量的增加。发根培养至30天时,蔗糖浓度为60-90g/L的培养基,发根的生物量的增加相差不大,但是为蔗糖浓度为30-40g/L的培养基中的发根生物量一倍。 (4)发根培养过程中,分别于第5和15天给蔗糖浓度为30g/L的培养基中添加一次或二次蔗糖,使培养基中的蔗糖终浓度相当于60g/L或90g/L,培养至30天时,添加蔗糖的培养基中的发根的干重生物量相当于不添加蔗糖培养基中的发根生物量一倍,相当于初始蔗糖浓度为60g/L和90g/L培养基中发根的生物量。 (5)随着培养基中蔗糖浓度的提高,发根干重/鲜重比显著增加。培养基中的蔗糖的消耗量与发根生物量的增加呈正相关,蔗糖消耗越多,发根生物量的增加越大。 比较pH值对发根生长和QHS合成的影响表明,灭菌前pH值在5.O-6.5范围内的培养基适合予1601-L-1的生长,小于5.O不利于发根的生长,pH5.8有利于1601-1-1生长和QHS的生物合成。发根收获时培养基中的pH值一般为4.5-5.2. pH7.O抑制发根的生长,pHl0.O对发根具有强烈的致死作用。发根在培养过程中,对培养基中的pH值具有显著的调节作用,发根能在很短的时间内(24- 48hrs)使pl:l值为5.8、6.4、7.0培养基降低到pH4. 5-5.2,pH为5.8的培养基有利于QHS合成。 比较不同基本培养基对发根生长和QHS合成的影响,试验结果表明N6、DCR、Litvay培养基有利于1601-L-1的生长,WS、White、B5培养基不利于发根的生长。DCR培养基中的QHS含量最高。 根据三水平试验选用三水平正交表来安排试验的原则,选用三水平正交表L7(3-),研究多因子效应对发根生长和QHS合成的影响,试验结果表明,Mg2+,Fe2+,Mn-2+,NH4NO3,KN03 ,KI,Ca-2+为发根生长的主要因子,NH4N03,KNOs,Mg2+,Ca2+,肌醇为QHS合成的主要因子。 通过TLC分析发根中QHS和其它化学成分,同时比较发根和无菌苗及野生植株的化学成分,发根和无菌苗均能合成包括QHS在内的野生青蒿叶片中的大部分非挥发性的化台 物。 研究青蒿植株在发育过程中QHS的含量的变化以及发根、无菌苗和野生青蒿中QHS的合成,HP分析结果表明,l、不同的单株青蒿之间的QHS量相差很大。2、同一植株幼 叶的QHS含量比老叶的QHS含量高。3、不同单株青蒿之间达到最高QHS含量的时间不一样,开花期或开花之前。4、无菌苗(带根)或者不带根丛生芽均能合成QHS,但是带根的无菌蕾的QHS量比丛生芽中的QIS的含量高。5、不同发根农杆菌转化的发根系1601-L-1和15834-L-1都能合成QHS。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

本文通过根农杆菌(Agrobacterium tumfaciens)介导法分别将Signal和KDEL修饰的豇豆胰蛋白酶抑制剂(Cowpea trypsin inhibitor, CpTI)基因、豌豆外源凝集素(Pea lectin, P-Lec)和大豆Kunitz型胰蛋白酶抑制剂(Soybean Kunitz typsin inhibitor, SKTI)双价抗虫基因、雪花莲外源凝集素(Galanthus nivals agglutinin, GNA)基因以及高效复合启动子OM控制的苏云金杆菌(Bacillus thuringiensis, B.t.)杀虫毒蛋白基因导入了陆地棉(Gossypium hirsutum L.)栽培品种新陆早1号、新陆中2号、晋棉7号、冀合321、辽9和晋棉12号,并获得了大批转基因再生植株。 实验中对影响棉花转化和再生的一些条件进行了研究,从根农杆菌培养、棉花无菌苗的制备、转化操作和共培养等方面对转化条件进行了探讨;从激素配化、植物表达载体、外植体类型、基因型等方面对抗性愈伤组织的诱导进行了摸索;从激素、从碳源、培养容器、pH值、抗褐化剂及固化剂的选择等方面对影响植株再生的条件进行了优化。 本文开创性地采用嫁接代替移栽,从而极大地提高了转化植株定植成活率,缩短了缓苗时间并增加了转化植株当代的繁殖系数。 在建立了一套较为高效的陆地棉转化及再生系统基础上,本文还进行了其它转化方式和转化体系的初步探讨。利用棉花幼嫩种子无菌苗下胚轴作为外植体,通过改变愈伤组织诱导培养基配方面提高胚性愈伤组织的诱导频率,进而得到更多的体细胞胚状和再生植株,缩短再生周期;尝试用胚性愈伤组织作为外植体的根农杆菌介导法转化,确定了一些与转化有关的条件;建立了一套棉花茎尖培养程序,为运用基因枪法轰击棉花茎尖分生组织或用根农杆菌直接转化茎尖分生组织,以克服根农杆菌转化棉花时体胚发生的基因型局限开辟了一条新途径。 本文还建立了一种快速鉴定转化植株后代的方法。这一简便方法还有助于进行转基因棉纯合系的筛选以及外源基因的遗传稳定性研究。 转基因植株经Npt-II ELISA、PCR、PCR Southern 检测证明外源抗虫基因CpTI、SKTI、P-lec、GNA以及B.t.基因已存在于转化植株基因组内。修饰的CpTI转基因植株抗棉铃虫(Heliothis armigera Hubner)试验结果表明,其杀虫效果显著优于前期未修饰的CpTI转化植株。P-lec和SKTI双价转基因植株抗棉铃虫试验结果表明,转基因植株对棉铃虫幼虫具有较强的杀虫活力。 目前,已获得转以上抗虫基因棉花T1代植株。为今后进一步将植物基因工程技术应用于棉花遗传改良打下了基础。