878 resultados para Aggregation phenomena
Resumo:
The three-dimensional solution structure of the 40 residue amyloid beta-peptide, A beta(1-40), has been determined using NMR spectroscopy at pH 5.1, in aqueous sodium dodecyl sulfate (SDS) micelles, In this environment, which simulates to some extent a water-membrane medium, the peptide is unstructured between residues 1 and 14 which are mainly polar and likely solvated by water. However, the rest of the protein adopts an alpha-helical conformation between residues 15 and 36 with a kink or hinge at 25-27. This largely hydrophobic region is likely solvated by SDS. Based on the derived structures, evidence is provided in support of a possible new location for the transmembrane domain of A beta within the amyloid precursor protein (APP). Studies between pH 4.2 and 7.9 reveal a pH-dependent helix-coil conformational switch. At the lower pH values, where the carboxylate residues are protonated, the helix is uncharged, intact, and lipid-soluble. As the pH increases above 6.0, part of the helical region (15-24) becomes less structured, particularly near residues E22 and D23 where deprotonation appears to facilitate unwinding of the helix. This pH-dependent unfolding to a random coil conformation precedes any tendency of this peptide to aggregate to a beta-sheet as the pH increases. The structural biology described herein for A beta(1-40) suggests that (i) the C-terminal two-thirds of the peptide is an alpha-helix in membrane-like environments, (ii) deprotonation of two acidic amino acids in the helix promotes a helix-coil conformational transition that precedes aggregation, (iii) a mobile hinge exists in the helical region of A beta(1-40) and this may be relevant to its membrane-inserting properties and conformational rearrangements, and (iv) the location of the transmembrane domain of amyloid precursor proteins may be different from that accepted in the Literature. These results may provide new insight to the structural properties of amyloid beta-peptides of relevance to Alzheimer's disease.
Resumo:
The solution structure of A beta(1-40)Met(O), the methionine-oxidized form of amyloid beta-peptide A beta(1-40), has been investigated by CD and NMR spectroscopy. Oxidation of Met35 may have implications in the aetiology of Alzheimer's disease. Circular dichroism experiments showed that whereas A beta(1-40) and A beta(1-40)Met(O) both adopt essentially random coil structures in water (pH 4) at micromolar concentrations, the former aggregates within several days while the latter is stable for at least 7 days under these conditions. This remarkable difference led us to determine the solution structure of A beta(1-40)Met(O) using H-1 NMR spectroscopy. In a water-SDS micelle medium needed to solubilize both peptides at the millimolar concentrations required to measure NMR spectra, chemical shift and NOE data for A beta(1-40)Met(O) strongly suggest the presence of a helical region between residues 16 and 24. This is supported by slow H-D exchange of amide protons in this region and by structure calculations using simulated annealing with the program XPLOR. The remainder of the structure is relatively disordered. Our previously reported NMR data for A beta(1-40) in the same solvent shows that helices are present over residues 15-24 (helix 1) and 28-36 (helix 2), Oxidation of Met35 thus causes a local and selective disruption of helix 2. In addition to this helix-coil rearrangement in aqueous micelles, the CD data show that oxidation inhibits a coil-to-beta-sheet transition in water. These significant structural rearrangements in the C-terminal region of A beta may be important clues to the chemistry and biology of A beta(1-40) and A beta(1-42).
Resumo:
Elevated concentrations of plasma proinflammatory cytokines have been detected in patients with alcoholic hepatitis (AH) and in a model of lipopolysaccharide-induced hepatitis in ethanol-fed Wistar rats. These cytokines have been implicated in the pathogenesis of the liver damage. Considering the likely involvement of the immune system in AH, and the frequent use of Lewis rats in autoimmune disease models, Lewis rats were examined in the model to determine whether they would more closely mimic the immune status of a chronic alcoholic and be a preferable strain for use in future experiments. Lipopolysaccharide-induced hepatic tumor necrosis factor-cu, interleukin-1 alpha, interleukin-1 beta, and interleukin-6 mRNA expression was examined in both rat strains. The overall pattern of histological (panlobular piecemeal necrosis) and biochemical liver damage (plasma ALT levels), and cytokine expression was similar in both strains. Thus, it would appear that, despite the known susceptibility of Lewis rats to autoimmune phenomena, they do not respond to the experimental regime significantly better than Wistar rats. This study confirms that unknown mediators are contributing to the liver damage seen in this model and possibly in AH.
Resumo:
The use of aspirin as an anti-platelet drug is limited by its propensity to induce gastric injury and by its adverse effect on vascular prostacyclin formation. Two phenolic non-steroidal anti-inflammatory drugs (salicyclic acid and diflunisal) were modified by esterification with a series of O-acyl moieties. The short-term ulcerogenic in vitro and in vivo anti-platelet properties, pharmacodynamic profiles, and extent of hepatic extraction of these phenolic esters were compared with aspirin (acetylsalicylic acid). The more lipophilic esters (longer carbon chain length in O-acyl group) show significantly less gastrotoxicity in stressed rats than does aspirin after a single oral dose. The in vitro and in vivo anti-platelet studies show that these phenolic esters inhibited (1) arachidonate-triggered human platelet aggregation and (2) thrombin-stimulated rat serum thromboxane Ag production by platelets in the clotting process almost as effectively as aspirin. The hepatic extractions of these O-acyl derivatives are significantly higher than those of aspirin. The pharmacodynamic studies show that these O-acyl derivatives of salicylic acid and diflunisal probably bind to, or combine with, the same site on the platelet cyclooxygenase as aspirin. Replacing the O-acetyl group with longer chain O-acyl moiety in this series of phenolic esters markedly reduced the potential of these agents to induce short-term gastric injury but did not lessen their activity as inhibitors of platelet aggregation. These non-acetyl salicylates may therefore represent a novel class of anti-platelet drugs with less ulcerogenic potential.
Resumo:
The degree and distribution of parasitisation in relation to densities of pink wax scale, Ceroplastes rubens Maskell, on umbrella trees, Schefflera actinophylla (Endl.), in south-eastern Queensland were investigated to determine whether scale outbreaks could be attributed, in part, to low levels of parasitisation. Rates of parasitisation were independent of or inversely dependent on host density, and highly variable, especially at low densities. The absence of density dependent parasitisation may occur as a result of: (i) non-aggregation by parasitoids; (ii) aggregation by parasitoids where parasitisation is limited by intrinsic or extrinsic factors; and/or (iii) high rates of hyperparasitisation.
Resumo:
It is possible to remedy certain difficulties with the description of short wave length phenomena and interfacial slip in standard models of a laminated material by considering the bending stiffness of the layers. If the couple or moment stresses are assumed to be proportional to the relative deformation gradient, then the bending effect disappears for vanishing interface slip, and the model correctly reduces to an isotropic standard continuum. In earlier Cosserat-type models this was not the case. Laminated materials of the kind considered here occur naturally as layered rock, or at a different scale, in synthetic layered materials and composites. Similarities to the situation in regular dislocation structures with couple stresses, also make these ideas relevant to single slip in crystalline materials. Application of the theory to a one-dimensional model for layered beams demonstrates agreement with exact results at the extremes of zero and infinite interface stiffness. Moreover, comparison with finite element calculations confirm the accuracy of the prediction for intermediate interfacial stiffness.
Resumo:
In an investigation intended to determine training needs of night crews, Bowers et al. (1998, this issue) report two studies showing that the patterning of communication is a better discriminator of good and poor crews than is the content of communication. Bowers et al. characterize their studies as intended to generate hypotheses for training needs and draw connections with Exploratory Sequential Data Analysis (ESDA). Although applauding the intentions of Bowers ct al., we point out some concerns with their characterization and implementation of ESDA. Our principal concern is that the Bowers et al. exploration of the data does not convincingly lead them back to a better fundamental understanding of the original phenomena they are investigating.
Resumo:
The early effects of heat stress on the photosynthesis of symbiotic dinoflagellates (zooxanthellae) within the tissues of a reef-building coral were examined using pulse-amplitude-modulated (PAM) chlorophyll fluorescence and photorespirometry. Exposure of Stylophora pistillata to 33 and 34 degrees C for 4 h resulted in (1) the development of strong non-photochemical quenching (qN) of the chlorophyll fluorescence signal, (2) marked decreases in photosynthetic oxygen evolution, and (3) decreases in optimal quantum yield (F-v/F-m) of photosystern II (PSII), Quantum yield decreased to a greater extent on the illuminated surfaces of coral branches than on lower (shaded) surfaces, and also when high irradiance intensities were combined with elevated temperature (33 degrees C as opposed to 28 degrees C), qN collapsed in heat-stressed samples when quenching analysis was conducted in the absence of oxygen, Collectively, these observations are interpreted as the initiation of photoprotective dissipation of excess absorbed energy as heat (qN) and O-2-dependent electron flow through the Mehler-Ascorbate-Peroxidase cycle (MAP-cycle) following the point at which the rate of light-driven electron transport exceeds the capacity of the Calvin cycle. A model for coral bleaching is proposed whereby the primary site of heat damage in S, pistillata is carboxylation within the Calvin cycle, as has been observed during heat damage in higher plants, Damage to PSII and a reduction in F-v/F-m (i.e. photoinhibition) are secondary effects following the overwhelming of photoprotective mechanisms by light. This secondary factor increases the effect of the primary variable, temperature. Potential restrictions of electron flow in heat-stressed zooxanthellae are discussed with respect to Calvin cycle enzymes and the unusual status of the dinoflagellate Rubisco, Significant features of our model are that (1) damage to PSII is not the initial step in the sequence of heat stress in zooxanthellae, acid (2) light plays a key secondary role in the initiation of the bleaching phenomena.
Resumo:
We consider the magnetoresistance oscillation phenomena in the Bechgaard salts (TMTSF)(2)X, where X = ClO4, PF6, and AsF6 in pulsed magnetic fields to 51 T. Of particular importance is the observation of a new magnetoresistance oscillation for X = ClO4 in its quenched state. In the absence of any Fermi-surface reconstruction due to anion order at low temperatures, all three materials exhibit nonmonotonic temperature dependence of the oscillation amplitude in the spin-density-wave (SDW) state. We discuss a model where, below a characteristic temperature T* within the SDW state, a magnetic breakdown gap opens. [S0163-1829(99)00904-2].
Resumo:
Considerable research has indicated that children and their parents often demonstrate marked discrepancies in their reporting of anxiety-related phenomena. In such cases, the question arises as to whether children are capable of accurately reporting on their anxiety. In the present study, 50 children (aged 5 to 14 years) were asked to approach a large, German Shepherd dog. Prior to the task, both the mother and child independently predicted the closest point likely to be reached by the child and the degree of anxiety likely to be experienced. These predictions were then compared with the actual phenomena displayed by the child during the task. On the behavioural measure (closest step reached), both the child and mother demonstrated equivalent predictive accuracy. On the subjective measure (fear ratings) children were considerably more accurate than their mothers. The data were not influenced by gender, age, or clinical status. The results indicate the ability of children to accurately predict their anxious responses, and support the value of incorporating children's self-reports in the assessment of emotional disorders.
Resumo:
Kalata B1 is a member of a new family of polypeptides, isolated from. plants, which have a cystine knot structure embedded within an amide-cyclized backbone. This family of molecules are the largest known cyclic peptides, and thus, the mechanism of synthesis and folding is of great interest. To provide information about both these phenomena, we have synthesized kalata B1 using two distinct strategies. In the first, oxidation of the cysteine residues of a linear precursor peptide to form the correct disulfide bonds results in folding of the three-dimensional structure and preorganization of the termini in close proximity for subsequent cyclization. The second approach involved cyclization prior to oxidation. In the first method, the correctly folded peptide was produced only in the presence of partially hydrophobic solvent conditions. These conditions are presumably required to stabilize the surface-exposed hydrophobic residues. However,; in the synthesis,involving cyclization prior to oxidation, the cyclic reduced peptide folded to a significant degree in the absence of hydrophobic solvents and even more efficiently in the presence of hydrophobic solvents. Cyclization clearly has a major effect on the folding pathway and facilitates formation of the correctly disulfide-bonded form in aqueous solution; In addition to facilitating folding to a compact stable structure cyclization has an important effect on biological activity as assessed by hemolytic activity.
Resumo:
Gauging data are available from numerous streams throughout Australia, and these data provide a basis for historical analysis of geomorphic change in stream channels in response to both natural phenomena and human activities. We present a simple method for analysis of these data, and a briefcase study of an application to channel change in the Tully River, in the humid tropics of north Queensland. The analysis suggests that this channel has narrowed and deepened, rather than aggraded: channel aggradation was expected, given the intensification of land use in the catchment, upstream of the gauging station. Limitations of the method relate to the time periods over which stream gauging occurred; the spatial patterns of stream gauging sites; the quality and consistency of data collection; and the availability of concurrent land-use histories on which to base the interpretation of the channel changes.
Resumo:
An increased degree of utilization of the potential N-glycosylation site In the fourth repeat unit of the human tau protein may be involved in the inability of tau to bind to the corresponding tubulin sequence(s) and in the subsequent development of the paired helical filaments of Alzheimer's disease. To model these processes, we synthesized the octadecapeptide spanning this region without sugar, and with the addition of an N-acetyl-glucosamine moiety. The carbohydrate-protected, glycosylated asparagine was incorporated as a building block during conventional Fmoc-solid phase peptide synthesis. While the crude non-glycosylated analog was obtained as a single peptide, two peptides with, the identical, expected masses, in approximately equal amounts, were detected after the cleavage of the peracetylated glycopeptide. Surprisingly, the two glycopeptides switched positions on the reversed-phase high performance liquid chromatogram after removal of the sugar-protecting acetyl groups. Nuclear magnetic resonance spectroscopy and peptide sequencing identified the more hydrophobic deprotected peak as the target peptide, and the more hydrophilic deprotected peak as a peptide analog in which the aspartic acid-bond just preceding the glycosylated asparagine residue was isomerized resulting in the formation of a beta-peptide. The anomalous chromatographic behavior of the acetylated beta-isomer could be explained on the basis of the generation of an extended hydrophobic surface which is not present in any of the other three glycopeptide variants. Repetition of the syntheses, with altered conditions and reagents, revealed reproducibly high levels of aspartic acid-bond isomerization of the glycopeptide as well as lack of isomerization for the non-glycosylated parent analog. If similar increased aspartic acid-bond isomerization occurs in vivo, a protein modification well known to take place for both the amyloid deposits and the neurofibrillary tangles in Alzheimer's disease, this process may explain the aggregation of glycosylated tau into the paired helical filaments in the affected brains. Copyright (C) 1999 European Peptide Society and John Wiley & Sons, Ltd.
Resumo:
Although aspects of social identity theory are familiar to organizational psychologists, its elaboration, through self-categorization theory, of how social categorization and prototype-based depersonalization actually produce social identity effects is less well known. We describe these processes, relate self-categorization theory to social identity theory, describe new theoretical developments in detail, and show how these developments can address a: range of organizational phenomena. We discuss cohesion and deviance, leadership, subgroup and sociodemographic structure, and mergers and acquisitions.
Resumo:
The Alzheimer's disease amyloid protein precursor (APP) gene is part of a multi-gene super-family from which sixteen homologous amyloid precursor-like proteins (APLP) and APP species homologues have been isolated and characterised. Comparison of exon structure (including the uncharacterised APL-1 gene), construction of phylogenetic trees, and analysis of the protein sequence alignment of known homologues of the APP super-family were performed to reconstruct the evolution of the family and to assess the functional significance of conserved protein sequences between homologues. This analysis supports an adhesion function for all members of the APP super family, with specificity determined by those sequences which are not conserved between APLP lineages, and provides evidence for an increasingly complex APP superfamily during evolution. The analysis also suggests that Drosophila APPL and Caenorhabdotids elegans APL-1 may be a fourth APLP lineage indicating that these proteins, while not functional homologues of human APP, are similarly likely to regulate cell adhesion. Furthermore, the beta A4 sequence is highly conserved only in APP orthologues, strongly suggesting this sequence is of significant functional importance in this lineage. (C) 2000 Elsevier Science Ltd. All rights reserved.