Focused antithrombotic therapy: Novel anti-platelet salicylates with reduced ulcerogenic potential and higher first-pass detoxification than aspirin in rats
Data(s) |
01/01/1998
|
---|---|
Resumo |
The use of aspirin as an anti-platelet drug is limited by its propensity to induce gastric injury and by its adverse effect on vascular prostacyclin formation. Two phenolic non-steroidal anti-inflammatory drugs (salicyclic acid and diflunisal) were modified by esterification with a series of O-acyl moieties. The short-term ulcerogenic in vitro and in vivo anti-platelet properties, pharmacodynamic profiles, and extent of hepatic extraction of these phenolic esters were compared with aspirin (acetylsalicylic acid). The more lipophilic esters (longer carbon chain length in O-acyl group) show significantly less gastrotoxicity in stressed rats than does aspirin after a single oral dose. The in vitro and in vivo anti-platelet studies show that these phenolic esters inhibited (1) arachidonate-triggered human platelet aggregation and (2) thrombin-stimulated rat serum thromboxane Ag production by platelets in the clotting process almost as effectively as aspirin. The hepatic extractions of these O-acyl derivatives are significantly higher than those of aspirin. The pharmacodynamic studies show that these O-acyl derivatives of salicylic acid and diflunisal probably bind to, or combine with, the same site on the platelet cyclooxygenase as aspirin. Replacing the O-acetyl group with longer chain O-acyl moiety in this series of phenolic esters markedly reduced the potential of these agents to induce short-term gastric injury but did not lessen their activity as inhibitors of platelet aggregation. These non-acetyl salicylates may therefore represent a novel class of anti-platelet drugs with less ulcerogenic potential. |
Identificador | |
Idioma(s) |
eng |
Palavras-Chave | #Medical Laboratory Technology #Medicine, General & Internal #Medicine, Research & Experimental #Blood-flow #Liver #Acid #Cyclooxygenase #Acetylation #Metabolism #Solubility #Inhibition #Kinetics #Time |
Tipo |
Journal Article |