973 resultados para Affinity Labels
Resumo:
Available evidence suggests that the antischistosomal drug oxamniquine is converted to a reactive ester by a schistosome enzyme that is missing in drug-resistant parasites. This study presents data supporting the idea that the active ester is a sulfate and the activating enzyme is a sulfotransferase. Evidence comes from the fact that the parasite extract loses its activating capability upon dialysis, implying the requirement of some dialyzable cofactor. The addition of the sulfate donor 3'-phosphoadenosine 5'-phosphosulfate (PAPS) restored activity of the dialyzate, a strong indication that a sulfotransferase is probably involved. Classical sulfotransferase substrates like beta-estradiol and quercetin competitively inhibited the activation of oxamniquine. Furthermore, these substrates could be sulfonated in vitro using an extract of sensitive (but not resistant) schistosomes. Gel filtration analysis showed that the activating factor eluted in a fraction corresponding to a molecular mass of about 32 kDa, which is the average size of typical sulfotransferase subunits. Ion exchange and affinity chromatography confirmed the sulfotransferase nature of the enzyme. Putative sulfotransferases present in schistosome databases are being examined for their possible role as oxamniquine activators.
Resumo:
Tamoxifen (tam) is a widely used endocrine therapy in the treatment of early and advanced stage breast cancer in women and men. It is a pro-drug having weak affinity with the estrogen receptor and needs to be converted to its main metabolite, endoxifen (endox), to have full anticancer activity. Cytochrome 2D6 (CYP2D6) plays a major role in the metabolism of tamoxifen to endoxifen. It is genetically highly polymorphic and its activity influences profoundly the synthesis of endoxifen and potentially the efficacy of tamoxifen treatment. Genotyping is currently the most widely used approach in studies and also in clinical practice to categorize patients as poor- (PM), intermediate- (IM), extensive- (EM) and ultra rapid-metabolizers (UM). Some clinicians already use genotyping in order to tailor the endocrine therapy of their patients. Owing to the large inter-individual variations in concentrations of the active moitey due to genetic and non-genetic influences renders the predictive value of the test uncertain for an individual patient. A significant number of patients classified as EM or IM by genotyping have indeed relatively low endoxifen levels similar to PMs1. This suggests that genotyping is probably not the opti ma l meth o d f or predi cti ng end oxif en l evels.
Resumo:
Collagen nerve guides are used clinically for peripheral nerve defects, but their use is generally limited to lesions up to 3 cm. In this study we combined collagen conduits with cells as an alternative strategy to support nerve regeneration over longer gaps. In vitro cell adherence to collagen conduits (NeuraGen(®) nerve guides) was assessed by scanning electron microscopy. For in vivo experiments, conduits were seeded with either Schwann cells (SC), SC-like differentiated bone marrow-derived mesenchymal stem cells (dMSC), SC-like differentiated adipose-derived stem cells (dASC) or left empty (control group), conduits were used to bridge a 1cm gap in the rat sciatic nerve and after 2-weeks immunohistochemical analysis was performed to assess axonal regeneration and SC infiltration. The regenerative cells showed good adherence to the collagen walls. Primary SC showed significant improvement in distal stump sprouting. No significant differences in proximal regeneration distances were noticed among experimental groups. dMSC and dASC-loaded conduits showed a diffuse sprouting pattern, while SC-loaded showed an enhanced cone pattern and a typical sprouting along the conduits walls, suggesting an increased affinity for the collagen type I fibrillar structure. NeuraGen(®) guides showed high affinity of regenerative cells and could be used as efficient vehicle for cell delivery. However, surface modifications (e.g. with extracellular matrix molecule peptides) of NeuraGen(®) guides could be used in future tissue-engineering applications to better exploit the cell potential.
Resumo:
Na,K-ATPase, the main active transport system for monovalent cations in animal cells, is responsible for maintaining Na(+) and K(+) gradients across the plasma membrane. During its transport cycle it binds three cytoplasmic Na(+) ions and releases them on the extracellular side of the membrane, and then binds two extracellular K(+) ions and releases them into the cytoplasm. The fourth, fifth, and sixth transmembrane helices of the alpha subunit of Na,K-ATPase are known to be involved in Na(+) and K(+) binding sites, but the gating mechanisms that control the access of these ions to their binding sites are not yet fully understood. We have focused on the second extracellular loop linking transmembrane segments 3 and 4 and attempted to determine its role in gating. We replaced 13 residues of this loop in the rat alpha1 subunit, from E314 to G326, by cysteine, and then studied the function of these mutants using electrophysiological techniques. We analyzed the results using a structural model obtained by homology with SERCA, and ab initio calculations for the second extracellular loop. Four mutants were markedly modified by the sulfhydryl reagent MTSET, and we investigated them in detail. The substituted cysteines were more readily accessible to MTSET in the E1 conformation for the Y315C, W317C, and I322C mutants. Mutations or derivatization of the substituted cysteines in the second extracellular loop resulted in major increases in the apparent affinity for extracellular K(+), and this was associated with a reduction in the maximum activity. The changes produced by the E314C mutation were reversed by MTSET treatment. In the W317C and I322C mutants, MTSET also induced a moderate shift of the E1/E2 equilibrium towards the E1(Na) conformation under Na/Na exchange conditions. These findings indicate that the second extracellular loop must be functionally linked to the gating mechanism that controls the access of K(+) to its binding site.
Resumo:
1. In some tissues, a decrease in the number of cell surface receptors and alterations of the receptor coupling have been proposed as possible mechanisms mediating the deleterious effects of bacterial endotoxin in septic shock. 2. The effects of bacterial lipopolysaccharide (Escherichia coli 0111-B4; LPS) on vascular angiotensin II and vasopressin receptors have been examined in cultured aortic smooth muscle cells (SMC) of the rat by use of radioligand binding techniques. 3. In vascular SMC exposed to 1 micrograms ml-1 endotoxin for 24 h, a significant increase in angiotensin II binding was found. The change in [125I]-angiotensin II binding corresponded to an increase in the number of receptors whereas the affinity of the receptors was not affected by LPS. In contrast, no change in [3H]-vasopressin binding was observed. 4. The pharmacological characterization of angiotensin II binding sites in control and LPS-exposed cells demonstrated that LPS induced an increase in the AT1 subtype of the angiotensin II receptors. Receptor coupling as evaluated by measuring total inositol phosphates was not impaired by LPS. 5. The effect of LPS on the angiotensin II receptor was dose-, time- and protein-synthesis dependent and was associated with an increased expression of the receptor gene. 6. The ability of LPS to increase angiotensin II binding in cultured vascular SMC was independent of the endotoxin induction of NO-synthase. 7. These results suggest that, besides inducing factors such as cytokines and NO-synthase, endotoxin may enhance the expression of cell surface receptors. The surprising increase in angiotensin II binding in LPS exposed VSM cells may represent an attempt by the cells to compensate for the decreased vascular responsiveness. It may also result from a non-specific LPS-related induction of genes.
Resumo:
Rhoptry-associated protein 2 (RAP2) is known to be discharged from rhoptry onto the membrane surface of infected and uninfected erythrocytes (UEs) ex vivo and in vitro and this information provides new insights into the understanding of the pathology of severe anemia in falciparum malaria. In this study, a hexahistidine-tagged recombinant protein corresponding to residues 5-190 of the N-terminal of Plasmodium falciparum RAP2 (rN-RAP2) was produced using a new method of solubilization and purification. Expression was induced with D-lactose, a less expensive alternative inducer to the more common isopropyl-²-D-thio-galactopyranosidase. The recombinant protein was purified using two types of commercially-available affinity columns, iminodiacetic and nitrilotriacetic. rN-RAP2 had immunogenic potential, since it induced high titers of anti-RAP2 antibodies in mice. These antibodies recognized full-length RAP2 prepared from Triton X-100 extracts from two strains of P. falciparum. In fact, the antibody recognized a 29-kDa product of RAP2 cleavage as well as 82 and 70-kDa products of RAP1 cleavage. These results indicate that the two antigens share sequence epitopes. Our expressed protein fragment was shown to contain a functional epitope that is also present in rhoptry-derived ring surface protein 2 which attaches to the surface of both infected and UEs and erythroid precursor cells in the bone marrow of malaria patients. Serum from malaria patients who developed anemia during infection recognized rN-RAP2, suggesting that this protein fragment may be important for epidemiological studies investigating whether immune responses to RAP2 exacerbate hemolysis in falciparum malaria patients.
Resumo:
The Bacteroides fragilis ATCC strain was grown in a synthetic media with contrasting redox potential (Eh) levels [reduced (-60 mV) or oxidised (+100mV)] and their adhesion capacity to extracellular matrix components was evaluated. The strain was capable of adhering to laminin, fibronectin, fibronectin + heparan sulphate and heparan sulphate. A stronger adherence to laminin after growing the strain under oxidising conditions was verified. Electron microscopy using ruthenium red showed a heterogeneous population under this condition. Dot-blotting analyses confirmed stronger laminin recognition by outer membrane proteins of cells cultured at a higher Eh. Using a laminin affinity column, several putative laminin binding proteins obtained from the cultures kept under oxidising (60 kDa, 36 kDa, 25 kDa and 15 kDa) and reducing (60 kDa) conditions could be detected. Our results show that the expression of B. fragilis surface components that recognise laminin are influenced by Eh variations.
Resumo:
Pyochelin (PCH) is a siderophore produced and secreted by Pseudomonas aeruginosa for iron capture. Using (55) Fe uptake and binding assays, we showed that PCH-Fe uptake in P. aeruginosa involves, in addition to the highly studied outer membrane transporter FptA, the inner membrane permease FptX, which recognizes PCH-(55) Fe with an affinity of 0.6 ± 0.2 nM and transports the ferri-siderophore complex from the periplasm into the cytoplasm: fptX deletion inhibited (55) Fe accumulation in the bacterial cytoplasm. Chromosomal replacement was used to generate P. aeruginosa strains producing fluorescent fusions with FptX, PchR (an AraC regulator), PchA (the first enzyme involved in the PCH biosynthesis) and PchE (a non-ribosomic peptide-synthetase involved in a further step). Fluorescence imaging and cellular fractionation showed a uniform repartition of FptX in the inner membrane. PchA and PchE were found in the cytoplasm, associated to the inner membrane all over the bacteria and also concentrated at the bacterial poles. PchE clustering at the bacterial poles was dependent on PchA expression, but on the opposite PchA clustering and membrane association was PchE-independent. PchA and PchE cellular organization suggests the existence of a siderosome for PCH biosynthesis as previously proposed for pyoverdine biosynthesis (another siderophore produced by P. aeruginosa).
Resumo:
A promising approach to adoptive transfer therapy of tumors is to reprogram autologous T lymphocytes by TCR gene transfer of defined Ag specificity. An obstacle, however, is the undesired pairing of introduced TCRalpha- and TCRbeta-chains with the endogenous TCR chains. These events vary depending on the individual endogenous TCR and they not only may reduce the levels of cell surface-introduced TCR but also may generate hybrid TCR with unknown Ag specificities. We show that such hybrid heterodimers can be generated even by the pairing of human and mouse TCRalpha- and TCRbeta-chains. To overcome this hurdle, we have identified a pair of amino acid residues in the crystal structure of a TCR that lie at the interface of associated TCR Calpha and Cbeta domains and are related to each other by both a complementary steric interaction analogous to a "knob-into-hole" configuration and the electrostatic environment. We mutated the two residues so as to invert the sense of this interaction analogous to a charged "hole-into-knob" configuration. We show that this inversion in the CalphaCbeta interface promotes selective assembly of the introduced TCR while preserving its specificity and avidity for Ag ligand. Noteworthily, this TCR modification was equally efficient on both a Mu and a Hu TCR. Our data suggest that this approach is generally applicable to TCR independently of their Ag specificity and affinity, subset distribution, and species of origin. Thus, this strategy may optimize TCR gene transfer to efficiently and safely reprogram random T cells into tumor-reactive T cells.
Resumo:
Microautophagy involves direct invagination and fission of the vacuolar/lysosomal membrane under nutrient limitation. This occurs by an autophagic tube, a specialized vacuolar membrane invagination that pinches off vesicles into the vacuolar lumen. In this study we have identified the VTC (vacuolar transporter chaperone) complex as required for microautophagy. The VTC complex is present on the ER and vacuoles and at the cell periphery. On induction of autophagy by nutrient limitation the VTC complex is recruited to and concentrated on vacuoles. The VTC complex is inhomogeneously distributed within the vacuolar membranes, showing an enrichment on autophagic tubes. Deletion of the VTC complex blocks microautophagic uptake into vacuoles. The mutants still form autophagic tubes but the production of microautophagic vesicles from their tips is impaired. In line with this, affinity-purified antibodies to the Vtc proteins inhibit microautophagic uptake in a reconstituted system in vitro. Our data suggest that the VTC complex is an important constituent of autophagic tubes and that it is required for scission of microautophagic vesicles from these tubes.
Resumo:
Most network operators have considered reducing Label Switched Routers (LSR) label spaces (i.e. the number of labels that can be used) as a means of simplifying management of underlaying Virtual Private Networks (VPNs) and, hence, reducing operational expenditure (OPEX). This letter discusses the problem of reducing the label spaces in Multiprotocol Label Switched (MPLS) networks using label merging - better known as MultiPoint-to-Point (MP2P) connections. Because of its origins in IP, MP2P connections have been considered to have tree- shapes with Label Switched Paths (LSP) as branches. Due to this fact, previous works by many authors affirm that the problem of minimizing the label space using MP2P in MPLS - the Merging Problem - cannot be solved optimally with a polynomial algorithm (NP-complete), since it involves a hard- decision problem. However, in this letter, the Merging Problem is analyzed, from the perspective of MPLS, and it is deduced that tree-shapes in MP2P connections are irrelevant. By overriding this tree-shape consideration, it is possible to perform label merging in polynomial time. Based on how MPLS signaling works, this letter proposes an algorithm to compute the minimum number of labels using label merging: the Full Label Merging algorithm. As conclusion, we reclassify the Merging Problem as Polynomial-solvable, instead of NP-complete. In addition, simulation experiments confirm that without the tree-branch selection problem, more labels can be reduced
Resumo:
Most network operators have considered reducing LSR label spaces (number of labels used) as a way of simplifying management of underlaying virtual private networks (VPNs) and therefore reducing operational expenditure (OPEX). The IETF outlined the label merging feature in MPLS-allowing the configuration of multipoint-to-point connections (MP2P)-as a means of reducing label space in LSRs. We found two main drawbacks in this label space reduction a)it should be separately applied to a set of LSPs with the same egress LSR-which decreases the options for better reductions, and b)LSRs close to the edge of the network experience a greater label space reduction than those close to the core. The later implies that MP2P connections reduce the number of labels asymmetrically
Resumo:
All-optical label swapping (AOLS) forms a key technology towards the implementation of all-optical packet switching nodes (AOPS) for the future optical Internet. The capital expenditures of the deployment of AOLS increases with the size of the label spaces (i.e. the number of used labels), since a special optical device is needed for each recognized label on every node. Label space sizes are affected by the way in which demands are routed. For instance, while shortest-path routing leads to the usage of fewer labels but high link utilization, minimum interference routing leads to the opposite. This paper studies all-optical label stacking (AOLStack), which is an extension of the AOLS architecture. AOLStack aims at reducing label spaces while easing the compromise with link utilization. In this paper, an integer lineal program is proposed with the objective of analyzing the softening of the aforementioned trade-off due to AOLStack. Furthermore, a heuristic aiming at finding good solutions in polynomial-time is proposed as well. Simulation results show that AOLStack either a) reduces the label spaces with a low increase in the link utilization or, similarly, b) uses better the residual bandwidth to decrease the number of labels even more
Resumo:
BACKGROUND: Knowledge of the number of recent HIV infections is important for epidemiologic surveillance. Over the past decade approaches have been developed to estimate this number by testing HIV-seropositive specimens with assays that discriminate the lower concentration and avidity of HIV antibodies in early infection. We have investigated whether this "recency" information can also be gained from an HIV confirmatory assay. METHODS AND FINDINGS: The ability of a line immunoassay (INNO-LIA HIV I/II Score, Innogenetics) to distinguish recent from older HIV-1 infection was evaluated in comparison with the Calypte HIV-1 BED Incidence enzyme immunoassay (BED-EIA). Both tests were conducted prospectively in all HIV infections newly diagnosed in Switzerland from July 2005 to June 2006. Clinical and laboratory information indicative of recent or older infection was obtained from physicians at the time of HIV diagnosis and used as the reference standard. BED-EIA and various recency algorithms utilizing the antibody reaction to INNO-LIA's five HIV-1 antigen bands were evaluated by logistic regression analysis. A total of 765 HIV-1 infections, 748 (97.8%) with complete test results, were newly diagnosed during the study. A negative or indeterminate HIV antibody assay at diagnosis, symptoms of primary HIV infection, or a negative HIV test during the past 12 mo classified 195 infections (26.1%) as recent (< or = 12 mo). Symptoms of CDC stages B or C classified 161 infections as older (21.5%), and 392 patients with no symptoms remained unclassified. BED-EIA ruled 65% of the 195 recent infections as recent and 80% of the 161 older infections as older. Two INNO-LIA algorithms showed 50% and 40% sensitivity combined with 95% and 99% specificity, respectively. Estimation of recent infection in the entire study population, based on actual results of the three tests and adjusted for a test's sensitivity and specificity, yielded 37% for BED-EIA compared to 35% and 33% for the two INNO-LIA algorithms. Window-based estimation with BED-EIA yielded 41% (95% confidence interval 36%-46%). CONCLUSIONS: Recency information can be extracted from INNO-LIA-based confirmatory testing at no additional costs. This method should improve epidemiologic surveillance in countries that routinely use INNO-LIA for HIV confirmation.
Resumo:
Estudi sobre les mesures que l’hotel Melià de Girona hauria d’adoptar per tal d’assolir l’etiqueta ecològica comunitària (EEC). També es fa una anàlisi comparativa entre aquesta ecoetiqueta i el sistema de gestió que utilitza actualment l’hotel (EMAS: Eco-Management and Audit Scheme)