985 resultados para 3D point
Resumo:
In order that the radius and thus ununiform structure of the teeth and otherelectrical and magnetic parts of the machine may be taken into consideration the calculation of an axial flux permanent magnet machine is, conventionally, doneby means of 3D FEM-methods. This calculation procedure, however, requires a lotof time and computer recourses. This study proves that also analytical methods can be applied to perform the calculation successfully. The procedure of the analytical calculation can be summarized into following steps: first the magnet is divided into slices, which makes the calculation for each section individually, and then the parts are submitted to calculation of the final results. It is obvious that using this method can save a lot of designing and calculating time. Thecalculation program is designed to model the magnetic and electrical circuits of surface mounted axial flux permanent magnet synchronous machines in such a way, that it takes into account possible magnetic saturation of the iron parts. Theresult of the calculation is the torque of the motor including the vibrations. The motor geometry and the materials and either the torque or pole angle are defined and the motor can be fed with an arbitrary shape and amplitude of three-phase currents. There are no limits for the size and number of the pole pairs nor for many other factors. The calculation steps and the number of different sections of the magnet are selectable, but the calculation time is strongly depending on this. The results are compared to the measurements of real prototypes. The permanent magnet creates part of the flux in the magnetic circuit. The form and amplitude of the flux density in the air-gap depends on the geometry and material of the magnetic circuit, on the length of the air-gap and remanence flux density of the magnet. Slotting is taken into account by using the Carter factor in the slot opening area. The calculation is simple and fast if the shape of the magnetis a square and has no skew in relation to the stator slots. With a more complicated magnet shape the calculation has to be done in several sections. It is clear that according to the increasing number of sections also the result will become more accurate. In a radial flux motor all sections of the magnets create force with a same radius. In the case of an axial flux motor, each radial section creates force with a different radius and the torque is the sum of these. The magnetic circuit of the motor, consisting of the stator iron, rotor iron, air-gap, magnet and the slot, is modelled with a reluctance net, which considers the saturation of the iron. This means, that several iterations, in which the permeability is updated, has to be done in order to get final results. The motor torque is calculated using the instantaneous linkage flux and stator currents. Flux linkage is called the part of the flux that is created by the permanent magnets and the stator currents passing through the coils in stator teeth. The angle between this flux and the phase currents define the torque created by the magnetic circuit. Due to the winding structure of the stator and in order to limit the leakage flux the slot openings of the stator are normally not made of ferromagnetic material even though, in some cases, semimagnetic slot wedges are used. In the slot opening faces the flux enters the iron almost normally (tangentially with respect to the rotor flux) creating tangential forces in the rotor. This phenomenon iscalled cogging. The flux in the slot opening area on the different sides of theopening and in the different slot openings is not equal and so these forces do not compensate each other. In the calculation it is assumed that the flux entering the left side of the opening is the component left from the geometrical centre of the slot. This torque component together with the torque component calculated using the Lorenz force make the total torque of the motor. It is easy to assume that when all the magnet edges, where the derivative component of the magnet flux density is at its highest, enter the slot openings at the same time, this will have as a result a considerable cogging torque. To reduce the cogging torquethe magnet edges can be shaped so that they are not parallel to the stator slots, which is the common way to solve the problem. In doing so, the edge may be spread along the whole slot pitch and thus also the high derivative component willbe spread to occur equally along the rotation. Besides forming the magnets theymay also be placed somewhat asymmetric on the rotor surface. The asymmetric distribution can be made in many different ways. All the magnets may have a different deflection of the symmetrical centre point or they can be for example shiftedin pairs. There are some factors that limit the deflection. The first is that the magnets cannot overlap. The magnet shape and the relative width compared to the pole define the deflection in this case. The other factor is that a shifting of the poles limits the maximum torque of the motor. If the edges of adjacent magnets are very close to each other the leakage flux from one pole to the other increases reducing thus the air-gap magnetization. The asymmetric model needs some assumptions and simplifications in order to limit the size of the model and calculation time. The reluctance net is made for symmetric distribution. If the magnets are distributed asymmetrically the flux in the different pole pairs will not be exactly the same. Therefore, the assumption that the flux flows from the edges of the model to the next pole pairs, in the calculation model from one edgeto the other, is not correct. If it were wished for that this fact should be considered in multi-pole pair machines, this would mean that all the poles, in other words the whole machine, should be modelled in reluctance net. The error resulting from this wrong assumption is, nevertheless, irrelevant.
Resumo:
En este trabajo se investiga la persistencia de las estimaciones puntuales subjetivas de rendimientos en cultivos anua- les realizadas por un amplio grupo de agricultores. La persistencia en el tiempo es una condición necesaria para la co- herencia y la confiabilidad de las estimaciones subjetivas de variables aleatorias. Los sujetos entrevistados estimaron valores puntuales de rendimientos de cultivos anuales (rendimientos medio, mayor, mínimo y más frecuente). Se han encontrado diferencias relativas poco importantes en todas las variables, excepto en los rendimientos mínimos, donde existe una alta dispersión. Los resultados son interesantes para estimar la adecuación de las técnicas de estimación de probabilidades subjetivas para ser utilizadas en los sistemas de ayuda en la toma de decisiones en agricultura.
Resumo:
This work proposes the development of an embedded real-time fruit detection system for future automatic fruit harvesting. The proposed embedded system is based on an ARM Cortex-M4 (STM32F407VGT6) processor and an Omnivision OV7670 color camera. The future goal of this embedded vision system will be to control a robotized arm to automatically select and pick some fruit directly from the tree. The complete embedded system has been designed to be placed directly in the gripper tool of the future robotized harvesting arm. The embedded system will be able to perform real-time fruit detection and tracking by using a three-dimensional look-up-table (LUT) defined in the RGB color space and optimized for fruit picking. Additionally, two different methodologies for creating optimized 3D LUTs based on existing linear color models and fruit histograms were implemented in this work and compared for the case of red peaches. The resulting system is able to acquire general and zoomed orchard images and to update the relative tracking information of a red peach in the tree ten times per second.
Resumo:
L'objectif de ce travail était d'établir une revue synthétique de la littérature concernant la situation de 3 zoonoses professionnelles en milieu forestier, à savoir la borréliose de Lyme, la tularémie et la leptospirose. Quatre-vingt-trois articles ont été utilisés pour la rédaction de ce travail, dont 30 traitaient spécifiquement de la borréliose de Lyme, 30 de la tularémie et 24 de la leptospirose. Une connaissance générale de chacune des zoonoses, notamment des vecteurs, hôtes et moyens de transmission, est nécessaire pour une bonne compréhension de la problématique et pour établir des mesures préventives adaptées. La situation épidémiologique de chacune d'entre elles est discutée à la fois chez les animaux et l'homme en Europe, puis plus spécifiquement chez les forestiers. Les études menées depuis 1995, s'appuyant principalement sur des analyses séroépidémiologiques, confirment le risque professionnel lié à ces 3 zoonoses chez les forestiers. Elles restent cependant insuffisantes pour quantifier ce risque. Le manque de données épidémiologiques à disposition, notamment pour la tularémie et la leptospirose, à la fois chez les animaux et l'homme, limite considérablement l'évaluation de leurs conséquences. Ce travail permet un aperçu rapide, clair et complet de ces 3 zoonoses professionnelles auxquelles les forestiers sont exposés en Europe et aidera à sensibiliser les professionnels de la santé et les travailleurs du secteur forestier à cette problématique ainsi qu'à la gestion et prévention des risques.
Resumo:
We evaluated the performance of an optical camera based prospective motion correction (PMC) system in improving the quality of 3D echo-planar imaging functional MRI data. An optical camera and external marker were used to dynamically track the head movement of subjects during fMRI scanning. PMC was performed by using the motion information to dynamically update the sequence's RF excitation and gradient waveforms such that the field-of-view was realigned to match the subject's head movement. Task-free fMRI experiments on five healthy volunteers followed a 2×2×3 factorial design with the following factors: PMC on or off; 3.0mm or 1.5mm isotropic resolution; and no, slow, or fast head movements. Visual and motor fMRI experiments were additionally performed on one of the volunteers at 1.5mm resolution comparing PMC on vs PMC off for no and slow head movements. Metrics were developed to quantify the amount of motion as it occurred relative to k-space data acquisition. The motion quantification metric collapsed the very rich camera tracking data into one scalar value for each image volume that was strongly predictive of motion-induced artifacts. The PMC system did not introduce extraneous artifacts for the no motion conditions and improved the time series temporal signal-to-noise by 30% to 40% for all combinations of low/high resolution and slow/fast head movement relative to the standard acquisition with no prospective correction. The numbers of activated voxels (p<0.001, uncorrected) in both task-based experiments were comparable for the no motion cases and increased by 78% and 330%, respectively, for PMC on versus PMC off in the slow motion cases. The PMC system is a robust solution to decrease the motion sensitivity of multi-shot 3D EPI sequences and thereby overcome one of the main roadblocks to their widespread use in fMRI studies.
Resumo:
The formation and semiclassical evaporation of two-dimensional black holes is studied in an exactly solvable model. Above a certain threshold energy flux, collapsing matter forms a singularity inside an apparent horizon. As the black hole evaporates the apparent horizon recedes and meets the singularity in a finite proper time. The singularity emerges naked, and future evolution of the geometry requires boundary conditions to be imposed there. There is a natural choice of boundary conditions which matches the evaporated black hole solution onto the linear dilaton vacuum. Below the threshold energy flux no horizon forms and boundary conditions can be imposed where infalling matter is reflected from a timelike boundary. All information is recovered at spatial infinity in this case.
Resumo:
OBJECTIVE: To assess the iodine status of Swiss population groups and to evaluate the influence of iodized salt as a vector for iodine fortification. DESIGN: The relationship between 24 h urinary iodine and Na excretions was assessed in the general population after correcting for confounders. Single-day intakes were estimated assuming that 92 % of dietary iodine was excreted in 24 h urine. Usual intake distributions were derived for male and female population groups after adjustment for within-subject variability. The estimated average requirement (EAR) cut-point method was applied as guidance to assess the inadequacy of the iodine supply. SETTING: Public health strategies to reduce the dietary salt intake in the general population may affect its iodine supply. SUBJECTS: The study population (1481 volunteers, aged ≥15 years) was randomly selected from three different linguistic regions of Switzerland. RESULTS: The 24 h urine samples from 1420 participants were determined to be properly collected. Mean iodine intakes obtained for men (n 705) and women (n 715) were 179 (sd 68.1) µg/d and 138 (sd 57.8) µg/d, respectively. Urinary Na and Ca, and BMI were significantly and positively associated with higher iodine intake, as were men and non-smokers. Fifty-four per cent of the total iodine intake originated from iodized salt. The prevalence of inadequate iodine intake as estimated by the EAR cut-point method was 2 % for men and 14 % for women. CONCLUSIONS: The estimated prevalence of inadequate iodine intake was within the optimal target range of 2-3 % for men, but not for women.