996 resultados para 310-M0005A
Resumo:
The magnetic properties of RCo5Ga7 (R = Y, Tb, Dy, Ho and Er) compounds which crystallize in the ScFe6Ga6-type structure have been studied. The compounds with R, Y, Tb, Dy, Ho and Er display behaviour similar to semiconductors. The Co transition metal sublattice is ferrimagnetic with a very low spontaneous magnetization. The ferrimagnetic ordering observed for R = Y, Tb, Dy, Ho and Er is due to the transition metal sublattice with transition temperatures at about 295 K. At low temperatures, the magnetic ordering for R Tb, Dy, Ho and Er is due to the rare-earth sublattice, which is ferromagnetic with a Curie temperature below 5 K. By fitting the linear part of the inverse magnetization, the effective magnetic moment of the R ion is found to be close to its expected theoretical value, with paramagnetic Curie temperatures below 5 K. Due to the paramagnetic nature of the R sublattice above 60 K, the ferrimagnetic ordering temperature of the Co sublattice does not vary with the type of rare-earth ion. The irreversibility of the magnetization of YCo5Ga7, as measured in zero-field cooled (ZFC) and field cooled (FC) states, is attributed to movement of domain walls. Application of a large enough applied field completes the movement of the domain wall from the low-temperature to the high-temperature one at 5 K. With a very low magnetic field 100 Oe, the difference between the ZFC and the FC shrinks. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
A polarization-insensitive semiconductor optical amplifier (SOA) with a very thin active tensile-strained InGaAs bulk has been fabricated. The polarization sensitivity of the amplifier gain is less than 1 dB over both the entire range of driving current and the 3 dB optical bandwidth of more than 80 nm. For optical signals of 1550 nm wavelength, the SOA exhibits a high saturation output power +7.6 dBm together with a low noise figure of 7.5 dB, fibre-to-fibre gain of 11.5 dB, and low polarization sensitivity of 0.5 dB. Additionally, at the gain peak 1520 nm, the fibre-to-fibre gain is measured to be 14.1 dB.
Resumo:
The thermal stability of InN in the growth environment in metalorganic chemical vapor deposition was systematically investigated in situ by laser reflectance system and ex situ by morphology characterization, X-ray diffraction and X-ray photoelectron spectroscopy. It was found that InN can withstand isothermal annealing at temperature as high as 600 degrees C in NH3 ambient. While in N-2 atmosphere, it will decompose quickly to form In-droplets at least at the temperature around 500 degrees C, and the activation energy of InN decomposition was estimated to be 2.1 +/- 0.1 eV. Thermal stability of InN when annealing in NH3 ambient during temperature altering would be very sensitive to ramping rate and NH3 flow rate, and InN would sustain annealing process at small ramping rate and sufficient supply of reactive nitrogen radicals. Whereas In-droplets formation was found to be the most frequently encountered phenomenon concerning InN decomposition, annealing window for conditions free of In-droplets was worked out and possible reasons related are discussed. In addition, InN will decompose in a uniform way in the annealing window, and the decomposition rate was found to be in the range of 50 and 100 nm/h. Hall measurement shows that annealing treatment in such window will improve the electrical properties of InN. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
p(+)-pi-n(-)-n(+) ultraviolet photodetectors based on 4H-SiC homoepilayers have been presented. The growth of the 4H-SiC homoepilayers was carried out in a LPCVD system. The size of the active area of the photodetectors was 300 x 300 mu m(2). The dark and illuminated I-V characteristics had been measured at reverse biases form 0 to 20 V at room temperature, and the illuminated current was at least two orders of magnitude than that of dark current below 13 V bias. The peak value zones of the photoresponse were located at 280-310 nm at different reverse biases, and the peak value located at 300 nm was 100 times greater than the cut-off response value in 380 nm at a bias of 10V, which showed the device had good visible blind performance. A small red-shift about 5 nm on the peak responsivity occurred when reverse bias increased from 5 to 15 V. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
1.5 mu m n-type InGaAsP/InGaAsP modulation-doped multiple quantum well (MD-MQW) DFB lasers have been fabricated successfully by low pressure metal organic chemical vapour deposition (LP-MOCVD) technology. The experimental results indicate that n-type MD-MQWs can effectively reduce the threshold Current compared with conventional multiple quantum well DFB lasers. Theoretical analysis indicates that such an effect is due to the much smaller absorption loss and lower Auger recombination, compared with that in an undoped MQW structure. Moreover, the introduction of n-type dopant of suitable levels of concentration in the barrier layers enhances the dynamic characteristics of DFB lasers, due to a coupling between the adjacent quantum well layers and tunnelling-assisted injection, which can reduce the relatively long capture time and increase the effective differential gain 1/X dG/dn .
Resumo:
Investigations on photoluminescence properties of (11 (2) over bar0) GaN grown on (1 (1) over bar 02) Al2O3 substrate by metalorganic chemical-vapor deposition are reported. Several emission lines not reported before are observed at low temperature. The sharp peak at 3.359 eV is attributed to the exciton bound to the neutral acceptor. Another peak at 3.310 eV represents a free-to-bound, probably a free electron-to-acceptor, transition. The 3.241 and 3.170 eV lines are interpreted as phonon replica lines of the 3.310 eV line. The phonon energy is 70 meV, consistent with the energy of transverse optical E-1 phonon. The optical properties of the lines are analyzed. (C) 2003 American Institute of Physics.
Resumo:
Optical and electrical properties of ZnSe self-organized quantum dots were investigated using photoluminescence, capacitance-voltage, and deep level transient Fourier spectroscopy techniques. The temperature dependence of photoluminescence was employed to clarify the mechanism of photoluminescence thermal quenching processes in ZnSe quantum dots. A theoretic fit on considering a two-step quenching processes well explained the experimental data. The apparent carrier concentration profile obtained from capacitance-voltage measurements exhibits an accumulation peak at the depth of about 100nm below the sample surface, which is in good agreement with the location of the quantum dot layer. The electronic ground state of ZnSe quantum dots is determined to be about 0.11 eV below the conduction band of ZnS, which is similar to that obtained by simulating the thermal quenching of ZnSe photoluminescence.
Resumo:
We report on high-frequency (300-700 GHz) ferromagnetic resonance (HF-FMR) measurements on cobalt superparamagnetic particles with strong uniaxial effective anisotropy. We derive the dynamical susceptibility of the system on the basis of an independent-grain model by using a rectangular approach. Numerical simulations give typical line shapes depending on the anisotropy, the gyromagnetic ratio, and the damping constant. HF-FMR experiments have been performed on two systems of ultrafine cobalt particles of different sizes with a mean number of atoms per particles of 150 +/- 20 and 310 +/- 20. In both systems, the magnetic anisotropy is found to be enhanced compared to the bulk value, and increases as the particle size decreases, in accordance with previous determinations from magnetization measurements. Although no size effect has been observed on the gyromagnetic ratio, the transverse relaxation time is two orders of magnitude smaller than the bulk value indicating strong damping effects, possibly originating from surface spin disorders.
Resumo:
A fabrication method of silicon nanostructures is presented. Silicon nanowire, shift-line structure and islands have been successfully fabricated on SOI wafer using e-beam lithography and anisotropic etching technique.
Resumo:
Vertical PIN ultraviolet photodetectors based on 4H-SiC homoepilayers are presented. The growth of the 4H-SiC homoepilayers was carried out in a LPCVD system. The size of the active area of the photodetector was 300 x 300 mu m(2). The dark and illuminated I-V characteristics were measured at reverse biases from 0 V to 30 V at room temperature. The illuminated current was at least two orders of magnitude higher than the dark current at a bias of below 12 V. The photoresponse was measured from 200 nm to 400 nm at different reverse biases and the peak values of the photo response were located at 3 10 nm. The calculated spectral detectivity D* was shown to be higher than 10(13) cmHz(1/2)/W from 260 to 360 nm with a peak value of 5.9 x 10(13) cmHz(1/2) /W at 310 nm. The peak value of the photoresponse was hundreds of times higher than the response at 400 nm, which showed the device had good visible blind performance. (c) 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
本文提出了一种新的基于优先级表的实时调度算法 ,称作截止期—价值密度优先 (Deadline ValueDen sityFirst)算法 ,简称DVDF算法 .DVDF算法综合考虑了实时任务的截止期和价值密度两个参数 ,能够更好地适应不同的负载情况 .通过使用正常负载和过载情况下的典型数据对算法进行仿真研究表明 ,这种算法比单纯考虑截止期的EDF(EarliestDeadlineFirst)算法在性能方面有明显的改进 ,特别是在系统过载的情况下 ,能够优雅地降级
Resumo:
简要叙述了磷酸型燃料电池(PAFC)最新研究进展,介绍了在相同条件下比较氢和甲烷作为燃料在磷酸(85% )电解质和A型电解质(多氟磷酸和磷酸的混合物)中的电化学行为。在130℃,将A型电解质燃料电池的输出特性与磷酸(85% )电解质燃料电池进行比较。全部试验在有参比电极的三电极试验电池中进行,试验电极采用自制电极,辅助电极采用光亮铂电极或者镀铂电极,参比电极采用动态氢电极。测量系统是由D.H.W 型恒电位/恒电流仪和3086 型记录仪组成。A型电解质燃料电池的输出功率高于磷酸(85% )电解质燃料电池,这是由于A型电解质具有较高的离子活性和活度。实验表明,A型电解质具有较高的电化学性能。