958 resultados para ääni-imago


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work deals with the synthesis, spectroscopic and structural investigation of pyrazolyl complexes of the type trans-[M(NCS)(2)(HPz)(4)] {M=Co (1), Ni (2); HPz=pyrazole}. Single crystal X-ray studies on 1 and 2 reveal the formation of similar supramolecular arrangements derived from self-assembly of monomers linked together through intermolecular N-H center dot center dot center dot SCN hydrogen bonds, C-H center dot center dot center dot pi interactions and pi-pi stacking. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

C28H28N2NiO4, triclinic, P (1) over bar (no. 2), a = 7.9202(6) angstrom, b = 8.0496(6) angstrom, c = 10.246(1) angstrom, alpha = 97.15(1)degrees, beta = 106.68(1)degrees, gamma = 94.686(9)degrees, V = 616.1 angstrom(3), Z = 1, R-gt(F) = 0.028, wR(ref)(F-2) = 0.078, T = 293 K.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The erbium-based manganite ErMnO3 has been partially substituted at the manganese site by the transition-metal elements Ni and Co. The perovskite orthorhombic structure is found from x(Ni) = 0.2-0.5 in the nickel-based solid solution ErNixMn1-xO3, while it can be extended up to x(Co) = 0.7 in the case of cobalt, provided that the synthesis is performed under oxygenation conditions to favor the presence of Co3+. Presence of different magnetic entities (i.e., Er3+, Ni2+, Co2+, Co3+, Mn3+, and Mn4+) leads to quite unusual magnetic properties, characterized by the coexistence of antiferromagnetic and ferromagnetic interactions. In ErNixMn1-xO3, a critical concentration x(crit)(Ni) = 1/3 separates two regimes: spin-canted AF interactions predominate at x < x(crit), while the ferromagnetic behavior is enhanced for x > x(crit). Spin reversal phenomena are present both in the nickel- and cobalt-based compounds. A phenomenological model based on two interacting sublattices, coupled by an antiferromagnetic exchange interaction, explains the inversion of the overall magnetic moment at low temperatures. In this model, the ferromagnetic transition-metal lattice, which orders at T-c, creates a strong local field at the erbium site, polarizing the Er moments in a direction opposite to the applied field. At low temperatures, when the contribution of the paramagnetic erbium sublattice, which varies as T-1, gets larger than the ferromagnetic contribution, the total magnetic moment changes its sign, leading to an overall ferrimagnetic state. The half-substituted compound ErCo0.50Mn0.50O3 was studied in detail, since the magnetization loops present two well-identified anomalies: an intersection of the magnetization branches at low fields, and magnetization jumps at high fields. The influence of the oxidizing conditions was studied in other compositions close to the 50/50 = Mn/Co substitution rate. These anomalies are clearly connected to the spin inversion phenomena and to the simultaneous presence of Co2+ and Co3+ magnetic moments. Dynamical aspects should be considered to well identify the high-field anomaly, since it depends on the magnetic field sweep rate. (C) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hydrogen evolution reaction (HER) was studied on Ni-LaNi5 and Ni-MmNi(3.4)Co(0.8)Al(0.8) electrode materials in 1 mol dm(-3) NaOH solution. The steady-state polarization curves and electrochemical impedance spectroscopy experimental data showed a pronounced improvement in HER kinetics when these electrode materials were used. The electrochemical results are in accordance with the Volmer-Heyrovsky mechanism. The kinetic results indicate a more effective improvement in the Heyrovsky step, suggesting an electrocatalytic synergistic effect of the hyper-electronic character of the Ni and the hypo-electronic character of the rare-earth element on the electrode surface. (C) 2000 International Association for Hydrogen Energy. Published by Elsevier B.V. Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method has been developed for the simultaneous determination of Al, As, Cu, Fe, Mn, and Ni in fuel ethanol by graphite furnace atomic absorption spectrometry (GFAAS) using a transversely heated graphite atomizer (THGA) with longitudinal Zeeman-effect background correction. The thermal behavior of analytes during the pyrolysis and atomization stages using the mixture Pd(NO3)(2) + Mg(NO3)(2) as the chemical modifier was investigated in 0.028 mol L-1 HNO3, 0.14 mol L-1 HNO3, and diluted ethanol (1 + 1, v/v) containing different nitric acid concentrations. With 5 rhog Pd + 3 mug Mg as the modifiers, pyrolysis and atomization temperatures of the heating program of the atomizer were fixed at 1200 C and 2200degreesC respectively. For 20 muL of diluted sample (10 muL ethanol + 10 muL of 0.28 mol L-1 HNO3) dispensed into the graphite tube, analytical curves in the 2.0 - 50 mug L-1 Al, As, Cu, Fe, Mn, Ni ranges were established. The calculated characteristic masses were - 37 pg Al, 73 pg As, 31 pg Cu, 16 pg Fe, 9 pg Mn, and 44 pg Ni, and the lifetime of the tube was around 2 50 firings. The limits of detection (LOD) based on integrated absorbance were 1.2 mug L-1 Al, 2.5 mug L-1 As. 0.22 mug L-1 Cu, 1.6 L-1 Fe 0.20 mug L-1 Mn 1.1 mug L-1 Ni. The relatively standard deviations (n = 12) were less than or equal to 3%, less than or equal to 6%, less than or equal to 2%, less than or equal to 3.4%, less than or equal to 1.3%, and less than or equal to 2% for Al, As, Cu, Fe, Mn, and Ni, respectively, the recoveries of Al, As, Cu, Fe, Mn and Ni added to fuel ethanol samples varied from 77% to 112%, 92% to 114%, 104% to 113%, 73% to 116%, 91% to 122% and 93% to 116%, respectively. Accuracy was checked for Al, As, Cu, Fe, Mn, and Ni determination in 20 samples purchased at local gas stations in Araraquara city, Brazil. A paired t-test showed that the results were in agreement at the 95% confidence level with those obtained by single-element GFAAS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work the influence of the anhtropogenic activities in the uptake of metals at a reservoir for public water supply in Araraquara City, São Paulo State, Brazil was studied. For this, the distribution of Cr, Ni, Cu, Cd and Pb in sediments collected from Anhumas reservoir, at seven sampling points and at three depths for each point was investigated. The pseudo-total and available metals contained in the different sediment samples were assessed using an ICP-AES technique. Among the five metals studied, cadmium possesses the largest relative potential availability, with percentages of 20 to 98% for the three different sediment types. In addition, the following decreasing availability order was characterized: Cd > Cu > Pb > Ni > Cr.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work was studied the distribution of Cr, Ni, Cu, Cd and Pb in humic fractions with different molecular size. The HS were extracted from waters (AHS), surface sediments (HESS), interface water sediment (HSIS) and bottom sediment (HSBS) collected in the Anhumas surface water collection reservoir, located in the district of Araraquara - São Paulo State Brazil. The humic substances were extracted by procedures recommended by International Humic Substances Society (IHSS). After purification by dialysis, the humic substances were fractionated using a multistage tangential flow ultrafiltration system. The fractionation patterns of HS characterized a mass distribution relatively uniform among the fractions with different molecular sizes, with larger values in the fractions F-2 (20.8%) and F-4 (23.8%), Except for the ions Pb(II) and Cu(II), which presented relatively higher concentrations in the fractions F-2 and F-4, respectively. In general, chromium, nickel, cadmium and lead have similar distributions in the five fractions with larger and medium molecular sizes (F-1 to F-5). With relation to the mass distributions in the different humic substances fractions extracted from sediment samples collected at three depth, they presented 42-48% of HS in the fractions with larger molecular sizes (F-1 and F-2), 29-31% in the middle fractions (F-3 and F-4) and 13-20% in the fractions with smaller molecular sizes (F-5 and F-6). In general, the metallic ions presented distributions similar among the respective fractions F-1 to F-6, Exceptions for Pb(II) and M(II) in surface sediment with concentrations relatively smaller in the fractions F-2 and F-4, respectively,

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A structural study of the thermal evolution of Ni0.69Cr0.31(OH)(2)(CO3)(0.155)(.)nH(2)O into NiO and tetragonal NiCr2O4 is reported. The characteristic structural parameters of the two coexisting crystalline phases, as well as their relative abundance, were determined by Rietveld refinement of powder x-ray diffraction (PXRD) patterns. The results of the simulations allowed us to elucidate the mechanism of the demixing process of the oxides. It is demonstrated that nucleation of a metastable nickel chromite within the common oxygen framework of the parent Cr-III-doped bunsenite is the initial step of the cationic redistribution. The role that trivalent cations play in the segregation of crystalline spinels is also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The preparation of the ZrO(2):8 mol % Y(2)O(3)/NiO (YSZ/NiO) composites by a modified liquid mixture technique is reported. Nanometric NiO particles dispersed over the yttria-stabilized zirconia (YSZ) were prepared, resulting in dense sintered specimens with no solid solution formation between the oxides. Such a feature allowed for the electrical characterization of the composites in a wide range of relative volume fraction, temperature, and oxygen partial pressure. The main results indicate that the composites have high electrical conductivity, and the transport properties in these mixed ionic-electronic (MIEC) composites are strongly dependent on the relative volume fraction of the phases, microstructure, and temperature. These parameters should hence be taken into consideration for the optimized design of MIEC composites for electrochemical applications. In this context, the composite was reduced under H(2) for the preparation of high-conductivity YSZ/Ni cermets for use as solid oxide fuel cell anode material with relatively low metal content. (c) 2005 the Electrochemical Society. [DOI:10.1149/1.2149312] All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

C22H32N2NiO6, triclinic, P (1) over bar (no. 2), a = 8.335(1) angstrom, b = 9.314(1) angstrom, c = 17.045(2) angstrom, alpha = 88.45(1)degrees, beta = 82.12(1)degrees, gamma = 70.296(9)degrees, V = 1233.7 angstrom(3), Z = 2, R-gt(F) = 0.050, wR(ref)(F-2) = 0.177, T = 293 K.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxycellulose (OXICEL) was packed in a glass column to pre-concentrate metal cations from aqueous solutions. The pre-concentrated metal cations are directly eluted from the column using 5.0 mL of 1.0 mol L(-1) hydrochloric acid. The optimum pre-concentration conditions are given and the retention efficency achieved is higher than 95%. The enrichment factor is 10 for sample volumes of 50 mL.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method is proposed for the simultaneous determination of Al, As, Cu, Fe, Mn, and Ni in fuel ethanol by electrothermal atomic absorption spectrometry (ETAAS) using W-Rh permanent modifier together with Pd(NO3)(2) + Mg(NO3)(2) conventional modifier. The integrated platform of a transversely heated graphite atomizer (THGA) was treated with tungsten, followed by rhodium, forming a deposit containing 250 mug W + 200 mug Rh. A 500-muL, volume of fuel ethanol was diluted with 500 muL, of 0.14 mol L-1 HNO3 in an autosampler cup of the spectrometer. Then, 20 muL, of the diluted ethanol was introduced into the pretreated graphite platform followed by the introduction of 5 mug Pd(NO3)(2) + 3 mug Mg(NO3)(2). The injection of this modifier was required to improve arsenic and iron recoveries in fuel ethanol. Calibrations were carried out using multi-element reference solutions prepared in diluted ethanol (1 + 1, v/v) acidified to 0. 14 mol L-1 HNO3. The pyrolysis and atomization temperatures of the heating program were 1200degreesC and 2200degreesC, respectively, which were obtained with multielement reference solutions in acidic diluted ethanol (1 + 1, v/v; 0. 14 mol L-1 HNO3). The characteristic masses for the simultaneous determination in ethanol fuel were 78 pg Al, 33 pg As, 10 pg Cu, 14 pg Fe, 7 pg Mn, and 24 pg Ni. The lifetime of the pretreated tube was about 700 firings. The detection limits (D.L.) were 1.9 mug L-1 Al, 2.9 mug L-1 As, 0.57 mug L-1.Cu, 1.3 mug L-1 Fe, 0.40 mug L-1 Mn, and 1.3 mug L-1 Ni. The relative standard deviations (n = 12) were 4%, 4%, 3%, 1.5%, 1.2%, and 2.2% for Al, As, Cu, Fe, Mn, and Ni, respectively. The recoveries of Al, As, Cu, Fe, Mn, and Ni added to the fuel ethanol samples varied from 81% to 95%, 80% to 98%, 97% to 109%, 85% to 107%, 98% to 106% and 97% to 103%, respectively. Accuracy was checked for the Al, As, Cu, Fe, Mn, and Ni determination in 10 samples purchased at a local gas station in Araraquara-SP City, Brazil. A paired t-test showed that at the 95% confidence level the results were in agreement with those obtained by single-element ETAAS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrochemical behavior of the annealed Cu-5wt.%Ni alloy in 0.5 M H2SO4 was studied by means of open-circuit potential (E-OCP) measurements, cyclic voltammetry, electrochemical impedance spectroscopy (EIS), and quasi-stationary linear potential sweep. The hydrodynamics of the system was also studied. This material is constituted by a single a, phase. The anodic behavior of a Cu-Ni alloy in H2SO4 consists fundamentally on the electrodissolution of Cu, its main component, and the formation of a sulfur-containing passive layer. The presence of Ni decreases the rate of Cu oxidation, mostly at high positive potentials. The impedance spectra, obtained for the unrotating electrode, can be interpreted in terms of a simple charge-transfer reaction across a surface layer. When the electrode is rotated, the occurrence of an inductive loop evidenced the existence of an adsorbed layer. All the resistance estimated from the proposed equivalent circuits diminished with the electrode rotation rate, emphasizing the influence of ion transport in the overall electrode process. The system presented two anodic Tafel slopes: 40 mV dec(-1) for E < 255 mV and 67 mV dec(-1) for E > 275 mV. A Tafel slope of 40 mV dec(-1) evidences that copper dissolution can be interpreted in terms of the mechanism proposed by Mattsson and Bockris. The second Tafel suggests that at potentials more positive than 275 mV, copper dissolves according to a mechanism that considers the disproportionation of adsorbed Cu(1) species. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports results from electrochemical evaluations of electrodes used as cathodes for a hydrogen evolution reaction and anodes in Ni-MH batteries that had been surface-modified by micro-encapsulation, co-deposition and sol-gel methods. The surface modifications produced actual improvements in the corresponding electrochemical reactions by enhancing the performance and/or the mechanical stability of the electrode material. (c) 2005 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.