870 resultados para viral particles


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Squeezed correlations of hadron-antihadron pairs are predicted to appear if their masses are modified in the hot and dense medium formed in high-energy heavy ion collisions. If discovered experimentally, they would be an unequivocal evidence of in-medium mass shift found by means of hadronic probes. We discuss a method proposed to search for this novel type of correlation, illustrating it by means of D(s)-mesons with in-medium shifted masses. These particles are expected to be more easily detected and identified in future upgrades at RHIC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A stochastic variational method is applied to calculate the binding energies and root-mean-square radii of 2, 3 and 4 alpha particles using an S-wave Ali-Bodmer potential. The results agree with other calculations. We discuss the application of the present method to study the universality in weakly-bound three and four-body systems in the context of ultracold atomic traps.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some dynamical properties of an ensemble of trajectories of individual (non-interacting) classical particles of mass m and charge q interacting with a time-dependent electric field and suffering the action of a constant magnetic field are studied. Depending on both the amplitude of oscillation of the electric field and the intensity of the magnetic field, the phase space of the model can either exhibit: (i) regular behavior or (ii) a mixed structure, with periodic islands of regular motion, chaotic seas characterized by positive Lyapunov exponents, and invariant Kolmogorov-Arnold-Moser curves preventing the particle to reach unbounded energy. We define an escape window in the chaotic sea and study the transport properties for chaotic orbits along the phase space by the use of scaling formalism. Our results show that the escape distribution and the survival probability obey homogeneous functions characterized by critical exponents and present universal behavior under appropriate scaling transformations. We show the survival probability decays exponentially for small iterations changing to a slower power law decay for large time, therefore, characterizing clearly the effects of stickiness of the islands and invariant tori. For the range of parameters used, our results show that the crossover from fast to slow decay obeys a power law and the behavior of survival orbits is scaling invariant. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4772997]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this work is to obtain spherical particles YIG from micrometric to nanometric scales. The spherical particles were obtained from cation hydrolysis in acid medium by adding urea or ammonia in order to carry out a homogeneous nucleation process up to 90 degrees C. Different composition and morphology were achieved by changing reactant concentrations, precipitation agent and stabilizing agent. X-ray diffractometry, electrophoretic mobility, transmission and scanning electron microscopies were carried out on these particles to investigate the phase identification, mobility, morphology and particle size. Crystalline YIG, with spherical characteristics, was obtained. The surface potential presented different characteristics for different dispersion media.