900 resultados para unfolded intermediate
Resumo:
Nonlinear distortion in delay-compensated spans for intermediate coupling is studied for the first time. Coupling strengths under -30dB/100m allow distortion reduction using shorter compensation lengths and higher delays. For higher coupling strengths no significant penalty results from shorter compensation lengths.
Resumo:
The required receiver time window after propagation through few-mode fibre is studied for a broad range of coupling and mode delay span configurations. Under intermediate coupling, effective mode delay compensation is observed for a compensation period of 25km.
Resumo:
An abstract of a thesis devoted to using helix-coil models to study unfolded states.\\
Research on polypeptide unfolded states has received much more attention in the last decade or so than it has in the past. Unfolded states are thought to be implicated in various
misfolding diseases and likely play crucial roles in protein folding equilibria and folding rates. Structural characterization of unfolded states has proven to be
much more difficult than the now well established practice of determining the structures of folded proteins. This is largely because many core assumptions underlying
folded structure determination methods are invalid for unfolded states. This has led to a dearth of knowledge concerning the nature of unfolded state conformational
distributions. While many aspects of unfolded state structure are not well known, there does exist a significant body of work stretching back half a century that
has been focused on structural characterization of marginally stable polypeptide systems. This body of work represents an extensive collection of experimental
data and biophysical models associated with describing helix-coil equilibria in polypeptide systems. Much of the work on unfolded states in the last decade has not been devoted
specifically to the improvement of our understanding of helix-coil equilibria, which arguably is the most well characterized of the various conformational equilibria
that likely contribute to unfolded state conformational distributions. This thesis seeks to provide a deeper investigation of helix-coil equilibria using modern
statistical data analysis and biophysical modeling techniques. The studies contained within seek to provide deeper insights and new perspectives on what we presumably
know very well about protein unfolded states. \\
Chapter 1 gives an overview of recent and historical work on studying protein unfolded states. The study of helix-coil equilibria is placed in the context
of the general field of unfolded state research and the basics of helix-coil models are introduced.\\
Chapter 2 introduces the newest incarnation of a sophisticated helix-coil model. State of the art modern statistical techniques are employed to estimate the energies
of various physical interactions that serve to influence helix-coil equilibria. A new Bayesian model selection approach is utilized to test many long-standing
hypotheses concerning the physical nature of the helix-coil transition. Some assumptions made in previous models are shown to be invalid and the new model
exhibits greatly improved predictive performance relative to its predecessor. \\
Chapter 3 introduces a new statistical model that can be used to interpret amide exchange measurements. As amide exchange can serve as a probe for residue-specific
properties of helix-coil ensembles, the new model provides a novel and robust method to use these types of measurements to characterize helix-coil ensembles experimentally
and test the position-specific predictions of helix-coil models. The statistical model is shown to perform exceedingly better than the most commonly used
method for interpreting amide exchange data. The estimates of the model obtained from amide exchange measurements on an example helical peptide
also show a remarkable consistency with the predictions of the helix-coil model. \\
Chapter 4 involves a study of helix-coil ensembles through the enumeration of helix-coil configurations. Aside from providing new insights into helix-coil ensembles,
this chapter also introduces a new method by which helix-coil models can be extended to calculate new types of observables. Future work on this approach could potentially
allow helix-coil models to move into use domains that were previously inaccessible and reserved for other types of unfolded state models that were introduced in chapter 1.
Telescoped approach to aryl hydroxymethylation in the synthesis of a key pharmaceutical intermediate
Resumo:
An efficient synthetic approach leading to introduction of the hydroxymethyl group to an aryl moiety via combination of the Bouveault formylation and hydride reduction has been optimized using a rational, mechanistic-based approach. This approach enabled telescoping of the two steps into a single efficient process, readily amenable to scaleup.
Resumo:
In this paper strontium-site-deficient Sr2Fe1.4Co0.1Mo0.5O6-δ-based perovskite oxides (SxFCM) were prepared and evaluated as the cathode materials for intermediate temperature solid oxide fuel cells (IT-SOFCs). All samples exhibited a cubic phase structure and the lattice shrinked with increasing the Sr-deficiency as shown in XRD patterns. XPS results determined that the transition elements (Co/Fe/Mo) in SxFCM oxides were in a mixed valence state, demonstrating the small polaron hopping conductivity mechanism existed. Among the samples, S1.950FCM presented the lowest coefficient of thermal expansion of 15.62 × 10-6 K-1, the highest conductivity value of 28 S cm-1 at 500 °C, and the lowest interfacial polarization resistance of 0.093 Ω cm2 at 800 °C, respectively. Furthermore, an anode-supported single cell with a S1.950FCM cathode was prepared, demonstrating a maximum power density of 1.16 W cm-2 at 800 °C by using wet H2 (3% H2O) as the fuel and ambient air as the oxidant. These results indicate that the introduction of Sr-deficiency can dramatically improve the electrochemical performance of Sr2Fe1.4Co0.1Mo0.5O6-δ, showing great promise as a novel cathode candidate material for IT-SOFCs.
Resumo:
In this work Cu1.4Mn1.6O4 (CMO) spinel oxide is prepared and evaluated as a novel cobalt-free cathode for intermediate temperature solid oxide fuel cells (IT-SOFCs). Single phase CMO powder with cubic structure is identified using XRD. XPS results confirm that mixed Cu+/Cu2+ and Mn3+/Mn4+ couples exist in the CMO sample, and a maximum conductivity of 78 S cm−1 is achieved at 800 °C. Meanwhile, CMO oxide shows good thermal and chemical compatibility with a 10 mol% Sc2O3 stabilized ZrO2 (ScSZ) electrolyte material. Impedance spectroscopy measurements reveals that CMO exhibits a low polarization resistance of 0.143 Ω cm2 at 800 °C. Furthermore, a Ni-ScSZ/ScSZ/CMO single cell demonstrates a maximum power density of 1076 mW cm−2 at 800 °C under H2 (3% H2O) as the fuel and ambient air as the oxidant. These results indicate that Cu1.4Mn1.6O4 is a superior and promising cathode material for IT-SOFCs.
Resumo:
In this paper, Sr2Fe1.5Mo0.4Nb0.1O6-δ (SFMNb)-xSm0.2Ce0.8O2-δ (SDC) (x = 0, 20, 30, 40, 50 wt%) composite cathode materials were synthesized by a one-pot combustion method to improve the electrochemical performance of SFMNb cathode for intermediate temperature solid oxide fuel cells (IT-SOFCs). The fabrication of composite cathodes by adding SDC to SFMNb is conducive to providing extended electrochemical reaction zones for oxygen reduction reactions (ORR). X-ray diffraction (XRD) demonstrates that SFMNb is chemically compatible with SDC electrolytes at temperature up to 1100 °C. Scanning electron microscope (SEM) indicates that the SFMNb-SDC composite cathodes have a porous network nanostructure as well as the single phase SFMNb. The conductivity and thermal expansion coefficient of the composite cathodes decrease with the increased content of SDC, while the electrochemical impedance spectra (EIS) exhibits that SFMNb-40SDC composite cathode has optimal electrochemical performance with low polarization resistance (Rp) on the La0.9Sr0.1Ga0.8Mg0.2O3 electrolyte. The Rp of the SFMNb-40SDC composite cathode is about 0.047 Ω cm2 at 800 °C in air. A single cell with SFMNb-40SDC cathode also displays favorable discharge performance, whose maximum power density is 1.22 W cm-2 at 800 °C. All results indicate that SFMNb-40SDC composite material is a promising cathode candidate for IT-SOFCs.
Resumo:
Cobalt-free composite cathodes consisting of Pr0.6Sr0.4FeO 3-δ -xCe0.9Pr0.1O 2-δ (PSFO-xCPO, x = 0-50 wt%) have been synthesized using a one-pot method. X-ray diffraction, scanning electron microscopy, thermal expansion coefficient, conductivity, and polarization resistance (R P ) have been used to characterize the PSFO-xCPO cathodes. Furthermore the discharge performance of the Ni-SSZ/SSZ/GDC/PSFO-xCPO cells has been measured. The experimental results indicate that the PSFO-xCPO composite materials fully consist of PSFO and CPO phases and posses a porous microstructure. The conductivity of PSFO-xCPO decreases with the increase of CPO content, but R P of PSFO-40CPO shows the smallest value amongst all the samples. The power density of single cells with a PSFO-40CPO composite cathode is significantly improved compared with that of the PSFO cathode, exhibiting 0.43, 0.75, 1.08 and 1.30 W cm-2 at 650, 700, 750 and 800 °C, respectively. In addition, single cells with the PSFO-40CPO composite cathode show a stable performance with no obvious degradation over 100 h when operating at 750 °C.
Resumo:
Background Despite the importance placed on the concept of the multidisciplinary team in relation to intermediate care (IC), little is known about community pharmacists’ (CPs) involvement.
Objective To determine CPs’ awareness of and involvement with IC services, perceptions of the transfer of patients’ medication information between healthcare settings and views of the development of a CP–IC service.
Setting Community pharmacies in Northern Ireland.
Methods A postal questionnaire, informed by previous qualitative work was developed and piloted.
Main outcome measure CPs’ awareness of and involvement with IC. Results The response rate was 35.3 % (190/539). Under half (47.4 %) of CPs ‘agreed/strongly agreed’ that they understood the term ‘intermediate care’. Three quarters of respondents were either not involved or unsure if they were involved with providing services to IC. A small minority (1.2 %) of CPs reported that they received communication regarding medication changes made in hospital or IC settings ‘all of the time’. Only 9.5 and 0.5 % of respondents ‘strongly agreed’ that communication from hospital and IC, respectively, was sufficiently detailed. In total, 155 (81.6 %) CPs indicated that they would like to have greater involvement with IC services. ‘Current workload’ was ranked as the most important barrier to service development.
Conclusion It was revealed that CPs had little awareness of, or involvement with, IC. Communication of information relating to patients’ medicines between settings was perceived as insufficient, especially between IC and community pharmacy settings. CPs demonstrated willingness to be involved with IC and services aimed at bridging the communication gap between healthcare settings.
Resumo:
Thermoelectric materials are revisited for various applications including power generation. The direct conversion of temperature differences into electric voltage and vice versa is known as thermoelectric effect. Possible applications of thermoelectric materials are in eco-friendly refrigeration, electric power generation from waste heat, infrared sensors, temperature controlled-seats and portable picnic coolers. Thermoelectric materials are also extensively researched upon as an alternative to compression based refrigeration. This utilizes the principle of Peltier cooling. The performance characteristic of a thermoelectric material, termed as figure of merit (ZT) is a function of several transport coefficients such as electrical conductivity (σ), thermal conductivity (κ) and Seebeck coefficient of the material (S). ZT is expressed asκσTZTS2=, where T is the temperature in degree absolute. A large value of Seebeck coefficient, high electrical conductivity and low thermal conductivity are necessary to realize a high performance thermoelectric material. The best known thermoelectric materials are phonon-glass electron – crystal (PGEC) system where the phonons are scattered within the unit cell by the rattling structure and electrons are scattered less as in crystals to obtain a high electrical conductivity. A survey of literature reveals that correlated semiconductors and Kondo insulators containing rare earth or transition metal ions are found to be potential thermoelectric materials. The structural magnetic and charge transport properties in manganese oxides having the general formula of RE1−xAExMnO3 (RE = rare earth, AE= Ca, Sr, Ba) are solely determined by the mixed valence (3+/4+) state of Mn ions. In strongly correlated electron systems, magnetism and charge transport properties are strongly correlated. Within the area of strongly correlated electron systems the study of manganese oxides, widely known as manganites exhibit unique magneto electric transport properties, is an active area of research.Strongly correlated systems like perovskite manganites, characterized by their narrow localized band and hoping conduction, were found to be good candidates for thermoelectric applications. Manganites represent a highly correlated electron system and exhibit a variety of phenomena such as charge, orbital and magnetic ordering, colossal magneto resistance and Jahn-Teller effect. The strong inter-dependence between the magnetic order parameters and the transport coefficients in manganites has generated much research interest in the thermoelectric properties of manganites. Here, large thermal motion or rattling of rare earth atoms with localized magnetic moments is believed to be responsible for low thermal conductivity of these compounds. The 4f levels in these compounds, lying near the Fermi energy, create large density of states at the Fermi level and hence they are likely to exhibit a fairly large value of Seebeck coefficient.
Resumo:
Certaines recherches ont investigué le traitement visuel de bas et de plus hauts niveaux chez des personnes neurotypiques et chez des personnes ayant un trouble du spectre de l’autisme (TSA). Cependant, l’interaction développementale entre chacun de ces niveaux du traitement visuel n’est toujours pas bien comprise. La présente thèse a donc deux objectifs principaux. Le premier objectif (Étude 1) est d’évaluer l’interaction développementale entre l’analyse visuelle de bas niveaux et de niveaux intermédiaires à travers différentes périodes développementales (âge scolaire, adolescence et âge adulte). Le second objectif (Étude 2) est d’évaluer la relation fonctionnelle entre le traitement visuel de bas niveaux et de niveaux intermédiaires chez des adolescents et des adultes ayant un TSA. Ces deux objectifs ont été évalué en utilisant les mêmes stimuli et procédures. Plus précisément, la sensibilité de formes circulaires complexes (Formes de Fréquences Radiales ou FFR), définies par de la luminance ou par de la texture, a été mesurée avec une procédure à choix forcés à deux alternatives. Les résultats de la première étude ont illustré que l’information locale des FFR sous-jacents aux processus visuels de niveaux intermédiaires, affecte différemment la sensibilité à travers des périodes développementales distinctes. Plus précisément, lorsque le contour est défini par de la luminance, la performance des enfants est plus faible comparativement à celle des adolescents et des adultes pour les FFR sollicitant la perception globale. Lorsque les FFR sont définies par la texture, la sensibilité des enfants est plus faible comparativement à celle des adolescents et des adultes pour les conditions locales et globales. Par conséquent, le type d’information locale, qui définit les éléments locaux de la forme globale, influence la période à laquelle la sensibilité visuelle atteint un niveau développemental similaire à celle identifiée chez les adultes. Il est possible qu’une faible intégration visuelle entre les mécanismes de bas et de niveaux intermédiaires explique la sensibilité réduite des FFR chez les enfants. Ceci peut être attribué à des connexions descendantes et horizontales immatures ainsi qu’au sous-développement de certaines aires cérébrales du système visuel. Les résultats de la deuxième étude ont démontré que la sensibilité visuelle en autisme est influencée par la manipulation de l’information locale. Plus précisément, en présence de luminance, la sensibilité est seulement affectée pour les conditions sollicitant un traitement local chez les personnes avec un TSA. Cependant, en présence de texture, la sensibilité est réduite pour le traitement visuel global et local. Ces résultats suggèrent que la perception de formes en autisme est reliée à l’efficacité à laquelle les éléments locaux (luminance versus texture) sont traités. Les connexions latérales et ascendantes / descendantes des aires visuelles primaires sont possiblement tributaires d’un déséquilibre entre les signaux excitateurs et inhibiteurs, influençant ainsi l’efficacité à laquelle l’information visuelle de luminance et de texture est traitée en autisme. Ces résultats supportent l’hypothèse selon laquelle les altérations de la perception visuelle de bas niveaux (local) sont à l’origine des atypies de plus hauts niveaux chez les personnes avec un TSA.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
This research focuses on finding a fashion design methodology to reliably translate innovative two-dimensional ideas on paper, via a structural design sculpture, into an intermediate model. The author, both as a fashion designer and a researcher, has witnessed the issues which arise, regarding the loss of some of the initial ideas and distortion during the two-dimensional creative sketch to three-dimensional garment transfer process. Therefore, this research is concerned with fashion designers engaged in transferring a two-dimensional sketch through the method ‘sculptural form giving’. This research method applies the ideal model of conceptual sculpture, in the fashion design process, akin to those used in the disciplines of architecture. These parallel design disciplines share similar processes for realizing design ideas. Moreover, this research investigates and formalizes the processes that utilize the measurable space between the garment and the body, to help transfer garment variation and scale. In summation, this research proposition focuses on helping fashion designers to produce a creative method that helps the designer transfer their imaginative concept through intermediate modeling.
Resumo:
Neodymium isotopic compositions (εNd) have been largely used for the last fifty years as a tracer of past ocean circulation, and more intensively during the last decade to investigate ocean circulation during the Cretaceous period. Despite a growing set of data, circulation patterns still remain unclear during this period. In particular, the identification of the deep-water masses and their spatial extension within the different oceanic basins are poorly constrained. In this study we present new deep-water εNd data inferred from the Nd isotope composition of fish remains and Fe-Mn oxyhydroxide coatings on foraminifera tests, along with new εNd data of residual (partly detrital) fraction recovered from DSDP sites 152 (Nicaraguan Rise), 258 (Naturaliste Plateau), 323 (Bellinghausen Abyssal Plain), and ODP sites 690 (Maud Rise) and 700 (East Georgia Basin, South Atlantic). The presence of abundant authigenic minerals in the sediments at sites 152 and 690 detected by XRD analyses may explain both middle rare earth element enrichments in the spectra of the residual fraction and the evolution of residual fraction εNd that mirror that of the bottom waters at the two sites. The results point towards a close correspondence between the bottom water εNd values of sites 258 and 700 from the late Turonian to the Santonian. Since the deep-water Nd isotope values at these two sites are also similar to those at other proto-Indian sites, we propose the existence of a common intermediate to deep-water water mass as early as the mid-Cretaceous. The water mass would have extended from the central part of the South Atlantic to the eastern part of proto-Indian ocean sites, beyond the Kerguelen Plateau. Furthermore, data from south and north of the Rio Grande Rise-Walvis Ridge complex (sites 700 and 530) are indistinguishable from the Turonian to Campanian, suggesting a common water mass since the Turonian at least. This view is supported by a reconstruction of the Rio Grande Rise-Walvis Ridge complex during the Turonian, highlighting the likely existence of a deep breach between the Rio Grande Rise and the proto-Walvis Ridge at that time. Thus deep-water circulation may have been possible between the different austral basins as early as the Turonian, despite the presence of potential oceanic barriers. Comparison of new seawater and residue εNd data on Nicaraguan Rise suggest a westward circulation of intermediate waters through the Caribbean Seaway during the Maastrichtian and Paleocene from the North Atlantic to the Pacific. This westward circulation reduced the Pacific water influence in the Atlantic, and was likely responsible for more uniform, less radiogenic εNd values in the North Atlantic after 80 Ma. Additionally, our data document an increasing trend observed in several oceanic basins during the Maastrichtian and the Paleocene, which is more pronounced in the North Pacific. Although the origin of this increase still remains unclear, it might be explained by an increase in the contribution of radiogenic material to upper ocean waters in the northern Pacific. By sinking to depth, these waters may have redistributed to some extent more radiogenic signatures to other ocean basins through deep-water exchanges.