987 resultados para thermal property
Preparation, Characterization And Thermal-Stability Of Ammonium Trioxalatocobaltate (Iii) Trihydrate
Thermal Weight Functions and Stress Intensity Factors for Bonded Dissimilar Media Using Body Analogy
Resumo:
In this study, an analytical method is presented for the computation of thermal weight functions in two dimensional bi-material elastic bodies containing a crack at the interface and subjected to thermal loads using body analogy method. The thermal weight functions are derived for two problems of infinite bonded dissimilar media, one with a semi-infinite crack and the other with a finite crack along the interface. The derived thermal weight functions are shown to reduce to the already known expressions of thermal weight functions available in the literature for the respective homogeneous elastic body. Using these thermal weight functions, the stress intensity factors are computed for the above interface crack problems when subjected to an instantaneous heat source.
Resumo:
A numerical study of conjugate natural convection and surface radiation in a horizontal hexagonal sheath housing 19 solid heat generating rods with cladding and argon as the fill gas, is performed. The natural convection in the sheath is driven by the volumetric heat generation in the solid rods. The problem is solved using the FLUENT CFD code. A correlation is obtained to predict the maximum temperature in the rod bundle for different pitch-to-diameter ratios and heat generating rates. The effective thermal conductivity is related to the heat generation rate, maximum temperature and the sheath temperature. Results are presented for the dimensionless maximum temperature, Rayleigh number and the contribution of radiation with changing emissivity, total wattage and the pitch-to-diameter ratio. In the simulation of a larger system that contains a rod bundle, the effective thermal conductivity facilitates simplified modelling of the rod bundle by treating it as a solid of effective thermal conductivity. The parametric studies revealed that the contribution of radiation can be 38-65% of the total heat generation, for the parameter ranges chosen. Data for critical Rayleigh number above which natural convection comes into effect is also presented. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The crystal structure, thennal expansion and electrical conductivity of the solid solutions YOgCao.2Fel-x MnxOJ+c5 (0 ~ x ~ 1.0) were investigated. All compositions had the GdFeOrtype orthorhombic perovskite structure with trace amounts of a second phase present in case of x = 0.8 and 1.0. The lattice parameters were detennined at room tempe'rature by using X-ray powder diffraction (XRPD). The pseudocubic lattice constant decreased with increasing x. The average I inear thermal expansion coefficient (anv) in the temperature range from 673 to 973 K showed negligible change with x up to x = 0.4. The thennal expansion curve for x = I had a slope approaching zero in the temperature range from 648 to 948 K. The calculated activation energy values for electrical conduction indicate that conduction occurs primarily by the small polaron hopping mechanism. The drastic drop in electrical conductivity for a small addition of Mn (0 ~ x ~ 0.2) is caused by the preferential fonnation of Mn4t ion~ (rather than Fe4 +) which act as carrier traps. This continues till the charge compensation for the divalent ions on the A-site is complete. The results indicate that with further increase in manganese content (beyond x =0.4) in the solid solutions, there is an increase in exc :::ss oxygen and consequently, a small increase in Mn'll il>I1~, which are charge compensated by the formation of cation vancancies.
Resumo:
We present a new class of continuously defined parametric snakes using a special kind of exponential splines as basis functions. We have enforced our bases to have the shortestpossible support subject to some design constraints to maximize efficiency. While the resulting snakes are versatile enough to provide a good approximation of any closed curve in the plane, their most important feature is the fact that they admit ellipses within their span. Thus, they can perfectly generate circular and elliptical shapes. These features are appropriate to delineate cross sections of cylindrical-like conduits and to outline blob-like objects. We address the implementation details and illustrate the capabilities of our snake with synthetic and real data.
Resumo:
Epitaxial films of La4BaCu5O13+δ and La4BaCu4NiO13+δ oxides are grown with a-b plane parallel to (100) of LaAlO3 and SrTiO3 by pulsed-laser deposition. The conductivity measurements performed along the c direction using LaNiO3 as the electrode show metallic behavior whereas they show semiconducting behavior in the a-b plane. Anisotropic transport property of these thin films is explained on the basis of nearly 180° connected Cu–O–Cu chains with an average Cu–O distance of 1.94 Å along the c direction and nearly 180° and 90° connected Cu–O–Cu chains in the a-b plane with short and long Cu–O distances ranging from 1.863 to 2.303 Å. YBa2Cu3O7−x has been grown along (00l) on La4BaCu5O13+δ and shows a Tc of 88 K.
Resumo:
Transparent glasses in the system 3BaO–3TiO2–B2O3 (BTBO) were fabricated via the conventional melt-quenching technique. The as-quenched samples were confirmed to be non-crystalline by differential thermal analysis (DTA). Thermal parameters were evaluated using non-isothermal DTA experiments. The Kauzmann temperature was found to be 759 K based on heating-rate-dependent glass transition and crystallization temperatures. A theoretical relation for the temperature-dependent viscosity is proposed for these glasses and glass-ceramics.
Resumo:
In this article, we describe our ongoing efforts in addressing the environment and energy challenges facing the world today. Tapping solar thermal energy seems to be the right choice for a country like India. We look at three solar-thermal technologies in the laboratory — water purification/distillation, Stirling engine, and air-conditioning/refrigeration.