853 resultados para textile dye degradation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Land degradation causes great changes in the soil biological properties. The process of degradation may decrease soil microbial biomass and consequently decrease soil microbial activity. The study was conducted out during 2009 and 2010 at the four sites of land under native vegetation (NV), moderately degraded land (LDL), highly degraded land (HDL) and land under restoration for four years (RL) to evaluate changes in soil microbial biomass and activity in lands with different degradation levels in comparison with both land under native vegetation and land under restoration in Northeast Brazil. Soil samples were collected at 0-10 cm depth. Soil organic carbon (SOC), soil microbial biomass C (MBC) and N (MBN), soil respiration (SR), and hydrolysis of fluorescein diacetate (FDA) and dehydrogenase (DHA) activities were analyzed. After two years of evaluation, soil MBC, MBN, FDA and DHA had higher values in the NV, followed by the RL. The decreases of soil microbial biomass and enzyme activities in the degraded lands were approximately 8-10 times as large as those found in the NV. However, after land restoration, the MBC and MBN increased approximately 5-fold and 2-fold, respectively, compared with the HDL. The results showed that land degradation produced a strong decrease in soil microbial biomass. However, land restoration may promote short- and long-term increases in soil microbial biomass.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The industrial wastewater from resin production plants contains as major components phenol and formaldehyde, which are traditionally treated by biological methods. As a possible alternative method, electrochemical treatment was tested using solutions containing a mixture of phenol and formaldehyde simulating an industrial effluent. The anode used was a dimensionally stable anode (DSAA (R)) of nominal composition Ti/Ru0.3Ti0.7O2, and the solution composition during the degradation process was analyzed by liquid chromatography and the removal of total organic carbon. From cyclic voltammetry, it is observed that for formaldehyde, a small offset of the beginning of the oxygen evolution reaction occurs, but for phenol, the reaction is inhibited and the current density decreases. From the electrochemical degradations, it was determined that 40 mA cm(-2) is the most efficient current density and the comparison of different supporting electrolytes (Na2SO4, NaNO3, and NaCl) indicated a higher removal of total organic carbon in NaCl medium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study investigates the use of solar heterogeneous photocatalyis (TiO2) for the destruction of [D-Leu]-Microcystin-LR, powerful toxin of widespread occurrence within cyanobacteria blooms. We extracted [D-Leu]-Microcystin-LR from a culture of Microcystis spp. and used a flat plate glass reactor coated with TiO2 (Degussa, P25) for the degradation studies. The irradiance was measured during the experiments with the aid of a spectroradiometer. After the degradation experiments, toxin concentrations were determined by HPLC and mineralization by TOC analyses. Acute and chronic toxicities were, quantified using mice and phosphatase inhibition in vitro assays, respectively. According to the performed experiments, 150 min were necessary to reduce the toxin concentration to the WHO's guideline for drinking water (from 10 to 1 mu g L-1) and to mineralize 90% of the initial carbon content. Another important finding is that solar heterogeneous photocatalysis was a destructive process indeed, not only for the toxin, but also for the other extract components and degradation products generated. Moreover, toxicity tests using mice have shown that the acute effect caused by the initial sample was removed. However, tests using the phosphatase enzyme indicated that it may be formed products capable of inducing chronic effects on mammals. The performed experiments indicate the feasibility of using solar heterogeneous photocatalysis for treating contaminated water with [D-Leu]-Microcystin-LR, not only due to its destruction, but also to the significant removal of organic matter and acute toxicity that can be achieved. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this in vitro study was to compare the degradation of resin-dentin bonds of an etch-and-rinse adhesive system to primary and permanent teeth. Flat superficial coronal dentin surfaces from 5 primary second molars and 5 permanent third molars were etched with phosphoric acid and bonded with an adhesive system (Adper Single Bond 2, 3M ESPE). Blocks of resin composite (Z250, 3M ESPE) were built up and the teeth sectioned to produce bonded sticks with a 0.8 mm(2) cross-sectional area. The sticks of each tooth were randomly divided and assigned to be subjected to microtensile testing immediately (24 h) or after aging by water storage (6 months). Data were analyzed by two-way repeated measures ANOVA and Tukey post hoc test (alpha = 0.05). Failure mode was evaluated using a stereomicroscope (400x). Microtensile values significantly decreased after the 6 months aging, independent of the dentin substrate. In 24 h, the values obtained to primary dentin were lower compared with permanent dentin. This difference was not maintained after aging. Adhesive/mixed failure was predominant in all experimental groups. In conclusion, degradation of resin-dentin bonds of the etch-and-rinse adhesive system occurred after 6 months of water storage; however, the reduction in bond strength values was higher for permanent teeth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impact of pyretroids, their by-products and degradation products on humans and the environment is recognized as a serious problem. Despite several studies regarding esfenvalerate toxicity and its detection in water and sediments, there is still a lack of information about its degradation intermediates and by-products in water. In this work, an HPLC method was developed to follow up the degradation of esfenvalerate and to detect the intermediates and by-products formed during the chemical degradation process. The chemical degradation was performed using an esfenvalerate suspension and different concentrations of hydrogen peroxide, temperatures, and pH. The reaction was monitored for 24 hr, and during the kinetic experiments, samples were collected at several reaction times and analyzed by HPLC-UV-PAD. In the degradation process, eleven different compounds (intermediate and by-products) were detected, among them the metabolites 3-phenoxybenzoic acid and 3-phenoxybenzaldehyde. HPLC-UV-PAD proved to be a valuable analytical technique for the rapid and reliable separation and determination of esfenvalerate, its degradation intermediates, and by-products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Erythrosine (ErB) is a xanthene and an US Food and Drug Administration approved dye used in foods, drugs and cosmetics. Although its utilization is permitted, ErB is described as inhibitor of enzymes and protein-protein interactions and is toxic to pituitary and spermatogenesis processes. However, the genotoxicity and mutagenicity of ErB is inconclusive in the literature. This study aimed to analyze the genotoxicity of this dye using the alkaline comet assay and is the first investigation to evaluate ErB mutagenicity using the cytokinesis block micronucleus cytome (CBMN-Cyt) assay in HepG2 cells. These cells were chosen because they produce phase I and phase II enzymes that can mimic in vivo metabolism. The cells were treated with seven concentrations (0.1-70.0 mu g mL(-1)) of ErB, and the results showed genotoxicity at the two highest concentrations and mutagenicity at six concentrations. Furthermore, as micronuclei result from clastogenic and aneugenic processes, while comet assay is often considered more sensitive and detects DNA single strain breaks, we suggest that an aneugenic is responsible for the observed damage. Although ErB is approved for use in the food, cosmetic and pharmaceutical industries, it must be used carefully because it damages the DNA structure. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work was to evaluate the catabolic gene diversity for the bacterial degradation of aromatic hydrocarbons in anthropogenic dark earth of Amazonia (ADE) and their biochar (BC). Functional diversity analyses in ADE soils can provide information on how adaptive microorganisms may influence the fertility of soils and what is their involvement in biogeochemical cycles. For this, clone libraries containing the gene encoding for the alpha subunit of aromatic ring-hydroxylating dioxygenases (alpha-A RH D bacterial gene) were constructed, totaling 800 clones. These libraries were prepared from samples of an ADE soil under two different land uses, located at the Caldeirao Experimental Station secondary forest (SF) and agriculture (AG)-, and the biochar (SF_BC and AG_BC, respectively). Heterogeneity estimates indicated greater diversity in BC libraries; and Venn diagrams showed more unique operational protein clusters (OPC) in the SF_BC library than the ADE soil, which indicates that specific metabolic processes may occur in biochar. Phylogenetic analysis showed unidentified dioxygenases in ADE soils. Libraries containing functional gene encoding for the alpha subunit of the aromatic ring-hydroxylating dioxygenases (ARHD) gene from biochar show higher diversity indices than those of ADE under secondary forest and agriculture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Isotibolone is frequently found as an impurity in tibolone, a drug used for hormone reposition of post-menopause women, due to some inadequate tibolone synthesis or as a result of degradation during drug storage. The presence of isotibolone impurities should be detected and quantified in active pharmaceutical ingredient products of tibolone before its use in the manufacturing of medicaments. The X-ray powder diffraction technique offers the possibility of quantifying isotibolone amounts at different stages of drug production and storage, from the chemical synthesis to the final formulation. In the course of a study involving the quantitative analysis of isotibolone by X-ray powder diffraction, the authors determined the structure of the title compound using a recently developed approach (A. Gomez and S. Kycia, J. Appl. Crystallogr. 2011, 44, 708-713). The structure is monoclinic, space group P2(1) (4), with unit cell parameters a = 6.80704(7) angstrom, b = 20.73858(18) angstrom, c = 6.44900(6) angstrom, beta = 76.4302(5)degrees, V = 884.980(15) angstrom(3) and two molecules per unit cell (Z = 2). The molecules are hydrogen bonded in the ab plane forming layers that are held together in the crystal by van der Waals interactions along the c-axis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to evaluate the resindentin bonds of two simplified etch-and-rinse adhesive after simulated cariogenic and inhibited cariogenic challenge in situ. Dental cavities (4 mm wide, 4 mm long, and 1.5 mm deep) were prepared in 60 bovine teeth with enamel margins. Restorations were bonded with either adhesive Adper Single Bond 2 (3MESPE) or Optibond Solo Plus (Kerr). Forty restorations were included in an intra-oral palatal appliance that was used for 10 adult volunteers while the remaining 20 dental blocks were not submitted to any cariogenic challenge [NC group] and tested immediately. For the simulated cariogenic challenge [C+DA], each volunteer dropped 20% sucrose solution onto all blocks four times a day during 14 days and distilled water twice a day. In the inhibited cariogenic challenge group [C + FA], the same procedure was done, but slurry of fluoride dentifrice (1.100 ppm) was applied instead of water. The restored bovine blocks were sectioned to obtain a slice for cross-sectional Vickers microhardness evaluation and resindentin bonded sticks (0.8 mm2) for resindentin microtensile evaluation. Data were evaluated by two-way ANOVA and Tukey's tests (a = 0.05). Statistically lower microhardness values and degradation of the resindentin bonds were only found in the C + DW group for both adhesives. The in situ model seems to be a suitable short-term methodology to investigate the degradation of the resindentin bonds under a more realistic condition. (c) 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 100B: 14661471, 2012.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Targeted regulation of protein levels is an important tool to gain insights into the role of proteins essential to cell function and development. In recent years, a method based on mutated forms of the human FKBP12 has been established and used to great effect in various cell types to explore protein function. The mutated FKBP protein, referred to as destabilization domain (DD) tag when fused with a native protein at the N- or C-terminus targets the protein for proteosomal degradation. Regulated expression is achieved via addition of a compound, Shld-1, that stabilizes the protein and prevents degradation. A limited number of studies have used this system to provide powerful insight into protein function in the human malaria parasite Plasmodium falciparum. In order to better understand the DD inducible system in P. falciparum, we studied the effect of Shld-1 on parasite growth, demonstrating that although development is not impaired, it is delayed, requiring the appropriate controls for phenotype interpretation. We explored the quantified regulation of reporter Green Fluorescent Protein (GFP) and luciferase constructs fused to three DD variants in parasite cells either via transient or stable transfection. The regulation obtained with the original FKBP derived DD domain was compared to two triple mutants DD24 and DD29, which had been described to provide better regulation for C-terminal tagging in other cell types. When cloned to the C-terminal of reporter proteins, DD24 provided the strongest regulation allowing reporter activity to be reduced to lower levels than DD and to restore the activity of stabilised proteins to higher levels than DD29. Importantly, DD24 has not previously been applied to regulate proteins in P. falciparum. The possibility of regulating an exported protein was addressed by targeting the Ring-Infected Erythrocyte Surface Antigen (RESA) at its C-terminus. The tagged protein demonstrated an important modulation of its expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photodithazine (PDZ) is an N-methyl-D-glucosamine derivative of chlorine e6 that is water soluble and has an intense absorption in the range of 650-680 nm. PDZ photobleaching and photoproduct formation were induced by illumination with laser at two wavelengths: 514 nm (ion argon laser) as well as in 630 nm (dye laser). The time constants of PDZ photobleaching were: 18 min for 630 nm irradiation and 50 min for 514 nm irradiation, suggesting that degradation after irradiation with red light is faster than with green light. Photoproducts formation was evidenced by the appearance of a new absorption band at 668 nm with slight broaden of the Soret band, suggesting that there was no break of the macrocycle. The cytotoxicity of the photodegradated PDZ was investigated and showed to be lower in the dark and higher than non irradiated PDZ. These results may have important clinical implications for PDT such as the possibility to use the previously irradiated PDZ just before clinical application in order to get increased efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the dyeing process in baths approximately 10 to 15% of the dyes used are lost and reach industrial effluents, thus polluting the environment. Studies showed that some classes of dyes, mainly azo dyes and their by-products, exert adverse effects on humans and local biota, since the wastewater treatment systems and water treatment plants were found to be ineffective in removing the color and reducing toxicity of some dyes. In the present study, the toxicity of the azo dyes disperse orange 1 (DO1), disperse red 1 (DR1), and disperse red 13 (DR13) was evaluated in HepG2 cells grown in monolayers or in three dimensional (3D) culture. Hepatotoxicity of the dyes was measured using 3-(4,5-dimethylthiazol-2yl)2,5-diphenyltetrazolium (MTT) and cell counting kit 8 (CCK-8) assays after 24, 48, and 72 h of incubation of cells with 3 different concentrations of the azo dyes. The dye DO1 only reduced the mitochondrial activity in HepG2 cells grown in a monolayer after 72 h incubation, while the dye DR1 showed this deleterious effect in both monolayer and 3D culture. In contrast, dye DR13 decreased the mitochondrial activity after 24, 48, and 72 h of exposure in both monolayer and 3D culture. With respect to dehydrogenase activity, only the dye DR13 diminished the activity of this enzyme after 72 h of exposure in both monolayer and 3D culture. Our results clearly demonstrated that exposure to the studied dyes induced cytotoxicity in HepG2 cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sevenfold enhancement of photoconversion efficiency was achieved by incorporation of peripheral ruthenium complexes to a porphyrin dye, generating supramolecular effects capable of playing several key roles (e.g., transferring energy to, inhibiting aggregation, and accepting the hole generated in the porphyrin center after electron injection), providing new insights for the design of better DSSC photosensitizers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aqueous extracts from wood biotreated with the white-rot fungus Ceriporiopsis subvermispora were evaluated for their Fe3+- and Cu2+-reducing activities and their anti- or prooxidant properties in Fenton-like reactions to decolorize the recalcitrant dye Azure B. The decolorization of Azure B was strongly inhibited in the presence of 10% (v/v) wood extracts. Only 0.1% (v/v)-diluted extracts provided some enhancement of the Azure B decolorization. The iron-containing reactions decolorized more Azure B and consumed substantially more H2O2 than the reactions containing copper. This study demonstrates that water-soluble wood phenols exert anti- or prooxidant effects that depend on their concentration in the reactions and on the type of cation, Fe3+ or Cu2+, used to convert H2O2 to OH radicals. Crown Copyright (C) 2012 Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Barium praseodymium tungstate (Ba1-xPr2x/3)WO4 crystals with (x = 0, 0.01, and 0.02) were prepared by the coprecipitation method. These crystals were structurally characterized by X-ray diffraction (XRD), Rietveld refinements, Fourier-transform Raman (FT-Raman) and Fourier-transform infrared (FT-IR) spectroscopies. The shape and size of these crystals were observed by field emission scanning electron microcopy (FE-SEM). Their optical properties were investigated by ultraviolet visible (UV-vis) absorption and photoluminescence (PL) measurements. Moreover, we have studied the photocatalytic (PC) activity of crystals for degradation of rhodamine B (RhB) dye. XRD patterns, Rietveld refinements data, FT-Raman and FT-IR spectroscopies indicate that all crystals exhibit a tetragonal structure without deleterious phases. FT-Raman spectra exhibited 13 Raman-active modes in a range from 50 to 1000 cm(-1), while FT-IR spectra have 8 infrared active modes in a range from 200 to 1050 cm(-1). FE-SEM images showed different shapes (bonbon-, spindle-, rice-and flake-like) as well as a reduction in the crystal size with an increase in Pr3+ ions. A possible growth process was proposed for these crystals. UV-vis absorption measurements revealed a decrease in optical band gap values with an increase of Pr3+ into the matrix. An intense green PL emission was noted for (Ba1-xPr2x/3)WO4 crystals (x = 0), while crystals with (x = 0.01 and 0.02) produced a reduction in the wide band PL emission and the narrow band PL emission which is related to f-f transitions from Pr3+ ions. High photocatalytic efficiency was verified for the bonbon-like BaWO4 crystals as a catalyst in the degradation of the RhB dye after 25 min under UV-light. Finally, we discuss possible mechanisms for PL and PC properties of these crystals.