967 resultados para stacking faults
Construction of invisibility cloaks of arbitrary shape and size using planar layers of metamaterials
Resumo:
Transformation optics (TO) is a powerful tool for the design of electromagnetic and optical devices with novel functionality derived from the unusual properties of the transformation media. In general, the fabrication of TO media is challenging, requiring spatially varying material properties with both anisotropic electric and magnetic responses. Though metamaterials have been proposed as a path for achieving such complex media, the required properties arising from the most general transformations remain elusive, and cannot implemented by state-of-the-art fabrication techniques. Here, we propose faceted approximations of TO media of arbitrary shape in which the volume of the TO device is divided into flat metamaterial layers. These layers can be readily implemented by standard fabrication and stacking techniques. We illustrate our approximation approach for the specific example of a two-dimensional, omnidirectional "invisibility cloak", and quantify its performance using the total scattering cross section as a practical figure of merit. © 2012 American Institute of Physics.
Resumo:
© 2016 The Author(s).Mid-ocean ridges display tectonic segmentation defined by discontinuities of the axial zone, and geophysical and geochemical observations suggest segmentation of the underlying magmatic plumbing system. Here, observations of tectonic and magmatic segmentation at ridges spreading from fast to ultraslow rates are reviewed in light of influential concepts of ridge segmentation, including the notion of hierarchical segmentation, spreading cells and centralized v. multiple supply of mantle melts. The observations support the concept of quasi-regularly spaced principal magmatic segments, which are 30-50 km long on average at fast- to slow-spreading ridges and fed by melt accumulations in the shallow asthenosphere. Changes in ridge properties approaching or crossing transform faults are often comparable with those observed at smaller offsets, and even very small discontinuities can be major boundaries in ridge properties. Thus, hierarchical segmentation models that suggest large-scale transform fault-bounded segmentation arises from deeper level processes in the asthenosphere than the finer-scale segmentation are not generally supported. The boundaries between some but not all principal magmatic segments defined by ridge axis geophysical properties coincide with geochemical boundaries reflecting changes in source composition or melting processes. Where geochemical boundaries occur, they can coincide with discontinuities of a wide range of scales.
Resumo:
Locked nucleic acids (LNA), conformationally restricted nucleotide analogues, are known to enhance pairing stability and selectivity toward complementary strands. With the aim to contribute to a better understanding of the origin of these effects, the structure, thermal stability, hybridization thermodynamics, and base-pair dynamics of a full-LNA:DNA heteroduplex and of its isosequential DNA:DNA homoduplex were monitored and compared. CD measurements highlight differences in the duplex structures: the homoduplex and heteroduplex present B-type and A-type helical conformations, respectively. The pairing of the hybrid duplex is characterized, at all temperatures monitored (between 15 and 37 degrees C), by a larger stability constant but a less favorable enthalpic term. A major contribution to this thermodynamic profile emanates from the presence of a hairpin structure in the LNA single strand which contributes favorably to the entropy of interaction but leads to an enthalpy penalty upon duplex formation. The base-pair opening dynamics of both systems was monitored by NMR spectroscopy via imino protons exchange measurements. The measurements highlight that hybrid G-C base-pairs present a longer base-pair lifetime and higher stability than natural G-C base-pairs, but that an LNA substitution in an A-T base-pair does not have a favorable effect on the stability. The thermodynamic and dynamic data confirm a more favorable stacking of the bases in the hybrid duplex. This study emphasizes the complementarities between dynamic and thermodynamical studies for the elucidation of the relevant factors in binding events.
Resumo:
In the casting of metals, tundish flow, welding, converters, and other metal processing applications, the behaviour of the fluid surface is important. In aluminium alloys, for example, oxides formed on the surface may be drawn into the body of the melt where they act as faults in the solidified product affecting cast quality. For this reason, accurate description of wave behaviour, air entrapment, and other effects need to be modelled, in the presence of heat transfer and possibly phase change. The authors have developed a single-phase algorithm for modelling this problem. The Scalar Equation Algorithm (SEA) (see Refs. 1 and 2), enables the transport of the property discontinuity representing the free surface through a fixed grid. An extension of this method to unstructured mesh codes is presented here, together with validation. The new method employs a TVD flux limiter in conjunction with a ray-tracing algorithm, to ensure a sharp bound interface. Applications of the method are in the filling and emptying of mould cavities, with heat transfer and phase change.
Resumo:
This paper discusses a reliability based optimisation modelling approach demonstrated for the design of a SiP structure integrated by stacking dies one upon the other. In this investigation the focus is on the strategy for handling the uncertainties in the package design inputs and their implementation into the design optimisation modelling framework. The analysis of fhermo-mechanical behaviour of the package is utilised to predict the fatigue life-time of the lead-free board level solder interconnects and warpage of the package under thermal cycling. The SiP characterisation is obtained through the exploitation of Reduced Order Models (ROM) constructed using high fidelity analysis and Design of Experiments (DoE) methods. The design task is to identify the optimal SiP design specification by varying several package input parameters so that a specified target reliability of the solder joints is achieved and in the same time design requirements and package performance criteria are met
Resumo:
New regional swath and near-bottom bathymetric data provide constraints on shallow structures at the Hess Deep Rift, an oceanic rift that exposes the crust and upper mantle of fast-spreading oceanic lithosphere created at the East Pacific Rise. These data reveal the presence of a lobate structure with a length of ~ 4 km and a width of ~ 6 km south of an Intrarift Ridge, north of Hess Deep. The lobe consists of a series of concentric benches that are widest in the center of the lobe and narrower at the edges, with a dominant bench separating two distinct morphologic regions in the lobe. There are two end-member possible interpretations of this feature: 1) the lobate structure represents a mass failure with little translation that contains coherent blocks that preserve rift-related lineaments; or 2) it represents degraded tectonic structures, and the lobate form is accounted for by, for example, two intersecting faults. We favor the slump interpretation because it more readily accounts for the lobate form of the feature and the curved benches and based on the presence of other similar lobes in this region. In the slump model, secondary structures within the benches may indicate radial spreading during or after failure. The large lobate structure we identify south of the Intrarift Ridge in Hess Deep is one of the first features of its kind identified in an oceanic rift, and illustrates that mass failure may be a significant process in these settings, consistent with the recognition of their importance in mid-ocean ridges, oceanic islands, and continental rifts. Understanding the structure of the Hess Deep Rift is also important for reconstructing the section of fast-spreading oceanic crust exposed here.
Resumo:
This paper presents a statistical-based fault diagnosis scheme for application to internal combustion engines. The scheme relies on an identified model that describes the relationships between a set of recorded engine variables using principal component analysis (PCA). Since combustion cycles are complex in nature and produce nonlinear relationships between the recorded engine variables, the paper proposes the use of nonlinear PCA (NLPCA). The paper further justifies the use of NLPCA by comparing the model accuracy of the NLPCA model with that of a linear PCA model. A new nonlinear variable reconstruction algorithm and bivariate scatter plots are proposed for fault isolation, following the application of NLPCA. The proposed technique allows the diagnosis of different fault types under steady-state operating conditions. More precisely, nonlinear variable reconstruction can remove the fault signature from the recorded engine data, which allows the identification and isolation of the root cause of abnormal engine behaviour. The paper shows that this can lead to (i) an enhanced identification of potential root causes of abnormal events and (ii) the masking of faulty sensor readings. The effectiveness of the enhanced NLPCA based monitoring scheme is illustrated by its application to a sensor fault and a process fault. The sensor fault relates to a drift in the fuel flow reading, whilst the process fault relates to a partial blockage of the intercooler. These faults are introduced to a Volkswagen TDI 1.9 Litre diesel engine mounted on an experimental engine test bench facility.
Resumo:
In the present paper, a phase-field model is developed to simulate the formation and evolution of lamellar microstructure in γ-TiAl alloys. The mechanism of formation of TiAl lamellae proposed by Denquin and Naka is incorporated into the model. The model describes the formation and evolution of the face-centered cubic (fcc) stacking lamellar zone followed by the subsequent appearance and growth of the γ-phase, involving both the chemical composition change by atom transfer and the ordering of the fcc lattice. The thermodynamics of the model system and the interaction between the displacive and diffusional transformations are described by a non-equilibrium free energy formulated as a function of concentration and structural order parameter fields. The long-range elastic interactions, arising from the lattice misfit between the α, fcc (A1) and the various orientation variants of the γ-phase are taken into account by incorporating of the elastic strain energy into the total free energy. Simulation studies based on the model successfully predicted some essential features of the lamellar structure. It is found that the formation and evolution of the lamellar structure are predominantly controlled by the minimization of the elastic energy of the interfaces between the different fcc stacking groups, low-symmetry product phase γ and the high-symmetry α-phase, as well as between the various orientation variants of the product phase.
Resumo:
To assess the contribution of accumulated winter precipitation and glacial meltwater to the recharge of deep ground water flow systems in fracture crystalline rocks, measurements of environmental isotope ratios, hydrochemical composition, and in situ parameters of ground water were performed in a deep tunnel. The measurements demonstrate the significance of these ground water recharge components for deep ground water flow systems in fractured granites of a high alpine catchment in the Central Alps, Switzerland. Hydrochemical and in situ parameters, as well as d18O in ground water samples collected in the tunnel, show only small temporal variations. The precipitation record of d18O shows seasonal variations of ~14‰ and a decrease of 0.23‰ ± 0.03‰ per 100 m elevation gain. d2H and d18O in precipitation are well correlated and plot close to the meteoric water line, as well as d2H and d18O in ground water samples, reflecting the meteoric origin of the latter. The depletion of 18O in ground water compared to 18O content in precipitation during the ground water recharge period indicates significant contributions from accumulated depleted winter precipitation to ground water recharge. The hydrochemical composition of the encountered ground water, Na-Ca-HCO3-SO4(-F), reflects an evolution of the ground water along the flowpath through the granite body. Observed tritium concentrations in ground water range from 2.6 to 16.6 TU, with the lowest values associated with a local negative temperature anomaly and anomalous depleted 18O in ground water. This demonstrates the effect of local ground water recharge from meltwater of submodern glacial ice. Such localized recharge from glaciated areas occurs along preferential flowpaths within the granite body that are mainly controlled by observed hydraulic active shear fractures and cataclastic faults.
Resumo:
This paper presents the results of feasibility study of a novel concept of power system on-line collaborative voltage stability control. The proposal of the on-line collaboration between power system controllers is to enhance their overall performance and efficiency to cope with the increasing operational uncertainty of modern power systems. In the paper, the framework of proposed on-line collaborative voltage stability control is firstly presented, which is based on the deployment of multi-agent systems and real-time communication for on-line collaborative control. Then two of the most important issues in implementing the proposed on-line collaborative voltage stability control are addressed: (1) Error-tolerant communication protocol for fast information exchange among multiple intelligent agents; (2) Deployment of multi-agent systems by using graph theory to implement power system post-emergency control. In the paper, the proposed on-line collaborative voltage stability control is tested in the example 10-machine 39-node New England power system. Results of feasibility study from simulation are given considering the low-probability power system cascading faults.
Resumo:
The sense of vision is people’s main source of information acquisition, hence the importance of a right diagnosis and correction, if necessary, of any faults for proper learning, especially in the early years of schooling. This article discusses the results of a survey of teachers in Andalusian schools that aimed at highlighting their knowledge of their students’ possible visual deficiencies, and its possible impact on school performance. The results indicate that such knowledge is generally limited to the type of refractive anomalies, and that they think that such anomalies are well treated in their students. Despite the importance they attach to these deficiencies on school learning, they think that other factors may have a greater role. They also consider that better training on this topic is necessary.
Resumo:
This brief examines the application of nonlinear statistical process control to the detection and diagnosis of faults in automotive engines. In this statistical framework, the computed score variables may have a complicated nonparametric distri- bution function, which hampers statistical inference, notably for fault detection and diagnosis. This brief shows that introducing the statistical local approach into nonlinear statistical process control produces statistics that follow a normal distribution, thereby enabling a simple statistical inference for fault detection. Further, for fault diagnosis, this brief introduces a compensation scheme that approximates the fault condition signature. Experimental results from a Volkswagen 1.9-L turbo-charged diesel engine are included.
Resumo:
Mid-to-late Holocene high-resolution testate amoebae-derived water table reconstructions from two peatlands in the North of Ireland are presented. The proxy climate records are dated and correlated using a combination of AMS 14C dating, spheroidal carbonaceous particles and tephrochronology. The reconstructions start prior to the Hekla 4 tephra isochron (2395–2279 BC) and thus span the last ~4500 years. The records are compiled by the process of tuning within chronological errors, standardisation and stacking. Comparisons are made to existing palaeoclimate records from peatlands in Northern Britain and Ireland and the compiled lake-level record for mid-latitude Europe. Four coherent dry phases are identified in the records at ca 1150–800 BC, 320 BC–AD 150, AD 250–470 and AD 1850–2000. Recent research has shown that peat-derived water table reconstructions reflect summer water deficit and therefore the dry phases are interpreted as periods with a higher frequency and/or greater magnitudes of summer drought. These ‘drought phases’ occur during periods of relatively low 14C production, which may add support to the hypothesis of persistent solar forcing of climate change during the Holocene. Any relationship with the North Atlantic stacked drift ice record is less clear. © 2009 Elsevier Ltd. All rights reserved.