929 resultados para scientific computation
Resumo:
In the present paper we generalize the concept of groups with triality and apply it to the theory of the Moufang, Bol and Bruck loops. Such generalizations allow us to reduce certain problems from the loop theory to problems in the theory of groups.
Resumo:
Scientific education and divulgation not only amplify people's vocabulary and repertory of scientific concepts but, at the same time, promote the diffusion of certain conceptual and cognitive metaphors. Here we describe this process and propose a classification in terms of visible, invisible, basic and derived metaphors. We focus our attention on physical metaphors applied to psychological and socio-economical phenomena, by studying two exemplar cases through an exhaustive exam of the online content of large Brazilian journalistic portals. Finally, we present implications and suggestions from Lakiff and Johnson's cognitive metaphor theory for the scientific education and divulgation process.
Resumo:
In this work, an analysis of scientific bibliographic productivity was made using the Faculdade de Filosofia e Ciencias, Universidade Estadual Paulista (FFC-UNESP) as example. It is composed by nine departments which offer altogether nine undergraduate courses: 1) Archival, 2) Library, 3) Speech Therapy, 4) Pedagogy, 5) International Relations, 6) Physiotherapy, 7) Occupational Therapy, 8) Philosophy, 9) Social Sciences and six graduate programs leading to M. S. and Ph.D. degrees. Moreover, when analyzing the different courses of FFC-UNESP, they represent typical academic organization in Brazil and Latin America and could be taken as a model for analyzing other Brazilian research institutions. Using data retrieved from the Lattes Plataform database (Curriculum Lattes) we have quantitatively the scientific productivity percentage of professors at UNESP. We observed that bibliometric evaluations using the Curriculum Lattes (CL) showed that the professors published papers in journal are not indexed by ISI and SCOPUS. This analysis was made using: 1) the total number of papers (indexed in Curriculum Lattes database), 2) the number of papers indexed by Thomson ISI Web of Science database and SCOPUS database, and 3) the Hirsch (h-index) by ISI and SCOPUS. Bibliometric evaluations of departments showed a better performance of Political Science and Economics Department when compared to others departments, in relation total number of papers (indexed in Curriculum Lattes database). We also analyzed the academic advisory (Master's Thesis and Ph. D. Thesis) by nine departments of FFC/UNESP. The Administration and School Supervision Department presented a higher academic advisory (concluded and current) when compared to the others departments.
Resumo:
The objective of this study was to present a panoramic view of the scientific production regarding Psychosocial Care Centers (CAPS). This literature review was performed using the LILACS, MEDLINE, and SciELO databases. Sixty-eight references were selected, most of which were journal articles (88.24%) and studies related to final graduate study essays (10.29%); 75% of the references found dating from 2003 were included. The following are highlighted among the most frequent objectives: the analysis and evaluation of the new proposal for mental health care, represented by Psychiatric Reform and by CAPS, and the analysis of mental health professionals and their expectations towards the services. The authors hope the present review will help find pathways and implications that lead to new studies and practices in the everyday work of health care services.
Resumo:
In this work, we present an implementation of quantum logic gates and algorithms in a three effective qubits system, represented by a (I = 7/2) NMR quadrupolar nuclei. To implement these protocols we have used the strong modulating pulses (SMP) and the various stages of each implementation were verified by quantum state tomography (QST). The results for the computational base states, Toffolli logic gates, and Deutsch-Jozsa and Grover algorithms are presented here. Also, we discuss the difficulties and advantages of implementing such protocols using the SMP technique in quadrupolar systems.
Resumo:
This work is part of a study that focused on analyzing the contributions of didactic activities related to scientific language rhetoric characteristics aimed at developing students' abilities to identify such characteristics in chemistry scientific texts and critical reading of those texts. In this study, we present the theoretical basis adopted to determine the scientific discourse characteristics and for the production of the didactic material used in those activities. Latour, Coracini and Campanario studies on persuasive rhetorical strategies present in scientific articles aided the production of such material.
Resumo:
This work evaluates the efficiency of economic levels of theory for the prediction of (3)J(HH) spin-spin coupling constants, to be used when robust electronic structure methods are prohibitive. To that purpose, DFT methods like mPW1PW91. B3LYP and PBEPBE were used to obtain coupling constants for a test set whose coupling constants are well known. Satisfactory results were obtained in most of cases, with the mPW1PW91/6-31G(d,p)//B3LYP/6-31G(d,p) leading the set. In a second step. B3LYP was replaced by the semiempirical methods PM6 and RM1 in the geometry optimizations. Coupling constants calculated with these latter structures were at least as good as the ones obtained by pure DFT methods. This is a promising result, because some of the main objectives of computational chemistry - low computational cost and time, allied to high performance and precision - were attained together. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
We analytically study the input-output properties of a neuron whose active dendritic tree, modeled as a Cayley tree of excitable elements, is subjected to Poisson stimulus. Both single-site and two-site mean-field approximations incorrectly predict a nonequilibrium phase transition which is not allowed in the model. We propose an excitable-wave mean-field approximation which shows good agreement with previously published simulation results [Gollo et al., PLoS Comput. Biol. 5, e1000402 (2009)] and accounts for finite-size effects. We also discuss the relevance of our results to experiments in neuroscience, emphasizing the role of active dendrites in the enhancement of dynamic range and in gain control modulation.
Resumo:
Over the past few years, the field of global optimization has been very active, producing different kinds of deterministic and stochastic algorithms for optimization in the continuous domain. These days, the use of evolutionary algorithms (EAs) to solve optimization problems is a common practice due to their competitive performance on complex search spaces. EAs are well known for their ability to deal with nonlinear and complex optimization problems. Differential evolution (DE) algorithms are a family of evolutionary optimization techniques that use a rather greedy and less stochastic approach to problem solving, when compared to classical evolutionary algorithms. The main idea is to construct, at each generation, for each element of the population a mutant vector, which is constructed through a specific mutation operation based on adding differences between randomly selected elements of the population to another element. Due to its simple implementation, minimum mathematical processing and good optimization capability, DE has attracted attention. This paper proposes a new approach to solve electromagnetic design problems that combines the DE algorithm with a generator of chaos sequences. This approach is tested on the design of a loudspeaker model with 17 degrees of freedom, for showing its applicability to electromagnetic problems. The results show that the DE algorithm with chaotic sequences presents better, or at least similar, results when compared to the standard DE algorithm and other evolutionary algorithms available in the literature.
Resumo:
The number of citations received by authors in scientific journals has become a major parameter to assess individual researchers and the journals themselves through the impact factor. A fair assessment therefore requires that the criteria for selecting references in a given manuscript should be unbiased with regard to the authors or journals cited. In this paper, we assess approaches for citations considering two recommendations for authors to follow while preparing a manuscript: (i) consider similarity of contents with the topics investigated, lest related work should be reproduced or ignored; (ii) perform a systematic search over the network of citations including seminal or very related papers. We use formalisms of complex networks for two datasets of papers from the arXiv and the Web of Science repositories to show that neither of these two criteria is fulfilled in practice. By representing the texts as complex networks we estimated a similarity index between pieces of texts and found that the list of references did not contain the most similar papers in the dataset. This was quantified by calculating a consistency index, whose maximum value is one if the references in a given paper are the most similar in the dataset. For the areas of "complex networks" and "graphenes", the consistency index was only 0.11-0.23 and 0.10-0.25, respectively. To simulate a systematic search in the citation network, we employed a traditional random walk search (i.e. diffusion) and a random walk whose probabilities of transition are proportional to the number of the ingoing edges of the neighbours. The frequency of visits to the nodes (papers) in the network had a very small correlation with either the actual list of references in the papers or with the number of downloads from the arXiv repository. Therefore, apparently the authors and users of the repository did not follow the criterion related to a systematic search over the network of citations. Based on these results, we propose an approach that we believe is fairer for evaluating and complementing citations of a given author, effectively leading to a virtual scientometry.
Resumo:
This paper aims to provide an improved NSGA-II (Non-Dominated Sorting Genetic Algorithm-version II) which incorporates a parameter-free self-tuning approach by reinforcement learning technique, called Non-Dominated Sorting Genetic Algorithm Based on Reinforcement Learning (NSGA-RL). The proposed method is particularly compared with the classical NSGA-II when applied to a satellite coverage problem. Furthermore, not only the optimization results are compared with results obtained by other multiobjective optimization methods, but also guarantee the advantage of no time-spending and complex parameter tuning.
Resumo:
Measurement-based quantum computation is an efficient model to perform universal computation. Nevertheless, theoretical questions have been raised, mainly with respect to realistic noise conditions. In order to shed some light on this issue, we evaluate the exact dynamics of some single-qubit-gate fidelities using the measurement-based quantum computation scheme when the qubits which are used as a resource interact with a common dephasing environment. We report a necessary condition for the fidelity dynamics of a general pure N-qubit state, interacting with this type of error channel, to present an oscillatory behavior, and we show that for the initial canonical cluster state, the fidelity oscillates as a function of time. This state fidelity oscillatory behavior brings significant variations to the values of the computational results of a generic gate acting on that state depending on the instants we choose to apply our set of projective measurements. As we shall see, considering some specific gates that are frequently found in the literature, the fast application of the set of projective measurements does not necessarily imply high gate fidelity, and likewise the slow application thereof does not necessarily imply low gate fidelity. Our condition for the occurrence of the fidelity oscillatory behavior shows that the oscillation presented by the cluster state is due exclusively to its initial geometry. Other states that can be used as resources for measurement-based quantum computation can present the same initial geometrical condition. Therefore, it is very important for the present scheme to know when the fidelity of a particular resource state will oscillate in time and, if this is the case, what are the best times to perform the measurements.
Resumo:
I attempt to articulate Jahoda's (2012) critical reflections regarding definitions of culture in recent cross-cultural studies and Moghaddam's (2012) claims of an omnicultural imperative to guide the elaboration of public policies for managing relationships among human groups from different cultural origins. For this, I will approach some aspects of the socio-historical and ontogenetic roots of the notion of culture. The notion of culture and the consequent public policies involving intercultural managing are being transformed as our global society develops. It has been proposed that some ways of dealing with the culture of the other are crucial to achieve awareness in respect of one's own cultural positioning when making science and attempting social interventions. Finally, the experience of Brazilian psychologists working on challenges faced by Amerindians dealing with the national society they live in will be presented as a pioneering work aiming to interfere in the development of public policies ethically concerned with the assurance of cultural integrity of currently marginalized social groups.
Resumo:
Abstract Background This article aims to discuss the incorporation of traditional time in the construction of a management scenario for pink shrimp in the Patos Lagoon estuary (RS), Brazil. To meet this objective, two procedures have been adopted; one at a conceptual level and another at a methodological level. At the conceptual level, the concept of traditional time as a form of traditional ecological knowledge (TEK) was adopted. Method At the methodological level, we conduct a wide literature review of the scientific knowledge (SK) that guides recommendations for pink shrimp management by restricting the fishing season in the Patos Lagoon estuary; in addition, we review the ethno-scientific literature which describes traditional calendars as a management base for artisanal fishers in the Patos Lagoon estuary. Results Results demonstrate that TEK and SK describe similar estuarine biological processes, but are incommensurable at a resource management level. On the other hand, the construction of a “management scenario” for pink shrimp is possible through the development of “criteria for hierarchies of validity” which arise from a productive dialog between SK and TEK. Conclusions The commensurable and the incommensurable levels reveal different basis of time-space perceptions between traditional ecological knowledge and scientific knowledge. Despite incommensurability at the management level, it is possible to establish guidelines for the construction of “management scenarios” and to support a co-management process.