886 resultados para respiratory function tests
Resumo:
LiteSteel beam (LSB) is a new cold-formed steel hollow flange channel section produced using a patented manufacturing process involving simultaneous cold-forming and dual electric resistance welding. The LSBs were commonly used as floor joists and bearers with web openings in residential, industrial and commercial buildings. Due to the unique geometry of LSBs, as well as its unique residual stress characteristics and initial geometric imperfections resultant of manufacturing processes, much of the existing research for common cold-formed steel sections is not directly applicable to LSBs. Many research studies have been carried out to evaluate the behaviour and design of LSBs subject to pure bending actions, predominant shear and combined actions. However, to date, no investigation has been conducted into the web crippling behaviour and strength of LSB sections. Hence detailed experimental studies were conducted to investigate the web crippling behaviour and strengths of LSBs under EOF (End One Flange) and IOF (Interior One Flange) load cases. A total of 26 web crippling tests was conducted and the results were compared with current AS/NZS 4600 design rules. This comparison showed that AS/NZS 4600 (SA, 2005) design rules are very conservative for LSB sections under EOF and IOF load cases. Suitable design equations have been proposed to determine the web crippling capacity of LSBs based on experimental results. This paper presents the details of this experimental study on the web crippling behaviour and strengths of LiteSteel beams under EOF and IOF load cases.
Resumo:
This paper presents the details of an experimental study of a cold-formed steel hollow flange channel beam known as LiteSteel Beam (LSB) subject to web crippling actions (ETF and ITF). Due to the geometry of the LSB, as well as its unique residual stress characteristics and initial geometric imperfections resultant of manufacturing processes, much of the existing research for common cold-formed steel sections is not directly applicable to LSB. Experimental and numerical studies have been carried out to evaluate the behaviour and design of LSBs subject to pure bending actions, predominant shear actions and combined actions. To date, however, no investigation has been conducted into the web crippling behaviour and strength of LSB sections under ETF and ITF load conditions. Hence experimental studies were conducted to assess the web crippling behaviour and strengths of LSBs. Twenty eight web crippling tests were conducted and the results were compared with the current AS/NZS 4600[1] and AISI S100 [2]design equations. Comparison of the ultimate web crippling capacities from tests showed that AS/NZS 4600[1] and AISI S100 [2] design equations are unconservative for LSB sections under ETF and ITF load cases. Hence new equations were proposed to determine the web crippling capacities of LSBs. Suitable design rules were also developed under the DSM format.
Resumo:
A key derivation function (KDF) is a function that transforms secret non-uniformly random source material together with some public strings into one or more cryptographic keys. These cryptographic keys are used with a cryptographic algorithm for protecting electronic data during both transmission over insecure channels and storage. In this thesis, we propose a new method for constructing a generic stream cipher based key derivation function. We show that our proposed key derivation function based on stream ciphers is secure if the under-lying stream cipher is secure. We simulate instances of this stream cipher based key derivation function using three eStream nalist: Trivium, Sosemanuk and Rabbit. The simulation results show these stream cipher based key derivation functions offer efficiency advantages over the more commonly used key derivation functions based on block ciphers and hash functions.
Resumo:
Aim Acute respiratory infections (ARI) are common in children, and symptoms range from days to weeks. The aim of this study was to determine if children with asthma have more severe ARI episodes compared with children with protracted bronchitis and controls. Methods Parents prospectively scored their child's next ARI using the Canadian acute respiratory illness and flu scale (CARIFS) and a validated cough diary (on days 1–7, 10 and 14 of illness). Children were age- and season-matched. Results On days 10 and 14 of illness, children with protracted bronchitis had significantly higher median CARIFS when compared with children with asthma and healthy controls. On day 14, the median CARIFS were: asthma = 4.1 (interquartile range (IQR) 4.0), protracted bronchitis = 19.6 (IQR 25.8) and controls = 4.1 (IQR 5.25). The median cough score was significantly different between groups on days 1, 7, 10 and 14 (P < 0.001). A significantly higher proportion of children with protracted bronchitis (63%) were still coughing at day 14 in comparison with children with asthma (24%) and healthy controls (26%). Conclusion Children with protracted bronchitis had the most severe ARI symptoms and higher percentage of respiratory morbidity at day 14 in comparison with children with asthma and healthy controls.
Resumo:
Background Viral respiratory illness triggers asthma exacerbations, but the influence of respiratory illness on the acute severity and recovery of childhood asthma is unknown. Our objective was to evaluate the impact of a concurrent acute respiratory illness (based on a clinical definition and PCR detection of a panel of respiratory viruses, Mycoplasma pneumoniae and Chlamydia pneumoniae) on the severity and resolution of symptoms in children with a nonhospitalized exacerbation of asthma. Methods Subjects were children aged 2 to 15 years presenting to an emergency department for an acute asthma exacerbation and not hospitalized. Acute respiratory illness (ARI) was clinically defined. Nasopharyngeal aspirates (NPA) were examined for respiratory viruses, Chlamydia and Mycoplasma using PCR. The primary outcome was quality of life (QOL) on presentation, day 7 and day 14. Secondary outcomes were acute asthma severity score, asthma diary, and cough diary scores on days 5, 7,10, and 14. Results On multivariate regression, presence of ARI was statistically but not clinically significantly associated with QOL score on presentation (B = 0.36, P = 0.025). By day 7 and 14, there was no difference between groups. Asthma diary score was significantly higher in children with ARI (B = 0.41, P = 0.039) on day 5 but not on presentation or subsequent days. Respiratory viruses were detected in 54% of the 78 NPAs obtained. There was no difference in the any of the asthma outcomes of children grouped by positive or negative NPA. Conclusions The presence of a viral respiratory illness has a modest influence on asthma severity, and does not influence recovery from a nonhospitalized asthma exacerbation.
Resumo:
Introduction Since 1992 there have been several articles published on research on plastic scintillators for use in radiotherapy. Plastic scintillators are said to be tissue equivalent, temperature independent and dose rate independent [1]. Although their properties were found to be promising for measurements in megavoltage X-ray beams there were some technical difficulties with regards to its commercialisation. Standard Imaging has produced the first commercial system which is now available for use in a clinical setting. The Exradin W1 scintillator device uses a dual fibre system where one fibre is connected to the Plastic Scintillator and the other fibre only measures Cerenkov radiation [2]. This paper presents results obtained during commissioning of this dosimeter system. Methods All tests were performed on a Novalis Tx linear accelerator equipped with a 6 MV SRS photon beam and conventional 6 and 18 MV X-ray beams. The following measurements were performed in a Virtual Water phantom at a depth of dose maximum. Linearity: The dose delivered was varied between 0.2 and 3.0 Gy for the same field conditions. Dose rate dependence: For this test the repetition rate of the linac was varied between 100 and 1,000 MU/min. A nominal dose of 1.0 Gy was delivered for each rate. Reproducibility: A total of five irradiations for the same setup. Results The W1 detector gave a highly linear relationship between dose and the number of Monitor Units delivered for a 10 9 10 cm2 field size at a SSD of 100 cm. The linearity was within 1 % for the high dose end and about 2 % for the very low dose end. For the dose rate dependence, the dose measured as a function of repetition the rate (100–1,000 MU/min) gave a maximum deviation of 0.9 %. The reproducibility was found to be better than 0.5 %. Discussion and conclusions The results for this system look promising so far being a new dosimetry system available for clinical use. However, further investigation is needed to produce a full characterisation prior to use in megavoltage X-ray beams.
Resumo:
Light gauge steel roofing systems made of thin profiled roof sheeting and battens are used commonly in residential, industrial and commercial buildings. Their critical design load combination is that due to wind uplift forces that occur during high wind events such as tropical cyclones and thunderstorms. However, premature local failures at their screw connections have been a concern for many decades since cyclone Tracy that devastated Darwin in 1974. Extensive research that followed cyclone Tracy on the pull-through and pull-out failures of roof sheeting to batten connections has significantly improved the safety of roof sheeting. However, this has made the batten to rafter/truss connection the weakest, and recent wind damage investigations have shown the failures of these connections and the resulting loss of entire roof structures. Therefore an experimental research program using both small scale and full scale air-box tests is currently under way to investigate the pull-through failures of thin-walled steel battens under high wind uplift forces. Tests have demonstrated that occurrence of pull-through failures in the bottom flanges of steel batttens and the need to develop simple test and design methods as a function of many critical parameters such as steel batten geometry, thickness and grade, screw fastener sizes and other fastening details. This paper presents the details of local failures that occur in light fauge roofing systems, a review of the current design and test methods for steel battens and associated short comings, and the test results obtained to date on pull-through failures of battens from small scale and full scale tests. Finally, it proposes the use of suitable small scale test methods that can be used by both researchers and manufacturers of such screw-fastened light gauge steel batten systems.
Resumo:
This study explored how the social context influences the stress-buffering effects of social support on employee adjustment. It was anticipated that the positive relationship between support from colleagues and employee adjustment would be more marked for those strongly identifying with their work team. Furthermore, as part of a three-way interactive effect, it was predicted that high identification would increase the efficacy of coworker support as a buffer of two role stressors (role overload and role ambiguity). One hundred and 55 employees recruited from first-year psychology courses enrolled at two Australian universities were surveyed. Hierarchical multiple regression analyses revealed that the negative main effect of role ambiguity on job satisfaction was significant for those employees with low levels of team identification, whereas high team identifiers were buffered from the deleterious effect of role ambiguity on job satisfaction. There also was a significant interaction between coworker support and team identification. The positive effect of coworker support on job satisfaction was significant for high team identifiers, whereas coworker support was not a source of satisfaction for those employees with low levels of team identification. A three-way interaction emerged among the focal variables in the prediction of psychological well-being, suggesting that the combined benefits of coworker support and team identification under conditions of high demand may be limited and are more likely to be observed when demands are low.
Resumo:
Inflammation of the spinal cord after traumatic spinal cord injury leads to destruction of healthy tissue. This “secondary degeneration” is more damaging than the initial physical damage and is the major contributor to permanent loss of functions. In our previous study we showed that combined delivery of two growth factors, vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF), significantly reduced secondary degeneration after hemi-section injury of the spinal cord in the rat. Growth factor treatment reduced the size of the lesion cavity at 30d compared to control animals and further reduced the cavity at 90d in treated animals while in control animals the lesion cavity continued to increase in size. Growth factor treatment also reduced astrogliosis and reduced macroglia/macrophage activation around the injury site. Treatment with individual growth factors alone had similar effects to control treatments. The present study investigated whether growth factor treatment would improve locomotor behaviour after spinal contusion injury, a more relevant preclinical model of spinal cord injury. The growth factors were delivered for the first 7d to the injury site via osmotic minipump. Locomotor behaviour was monitored at 1-28d after injury using the BBB score and at 30d using automated gait analysis. Treated animals had BBB scores of 18; Control animals scored 10. Treated animals had significantly reduced lesion cavities and reduced macroglia/macrophage activation around the injury site. We conclude that growth factor treatment preserved spinal cord tissues after contusion injury, thereby allowing functional recovery. This treatment has the potential to significantly reduce the severity of human spinal cord injuries.
Resumo:
The use of Wireless Sensor Networks (WSNs) for vibration-based Structural Health Monitoring (SHM) has become a promising approach due to many advantages such as low cost, fast and flexible deployment. However, inherent technical issues such as data asynchronicity and data loss have prevented these distinct systems from being extensively used. Recently, several SHM-oriented WSNs have been proposed and believed to be able to overcome a large number of technical uncertainties. Nevertheless, there is limited research verifying the applicability of those WSNs with respect to demanding SHM applications like modal analysis and damage identification. Based on a brief review, this paper first reveals that Data Synchronization Error (DSE) is the most inherent factor amongst uncertainties of SHM-oriented WSNs. Effects of this factor are then investigated on outcomes and performance of the most robust Output-only Modal Analysis (OMA) techniques when merging data from multiple sensor setups. The two OMA families selected for this investigation are Frequency Domain Decomposition (FDD) and data-driven Stochastic Subspace Identification (SSI-data) due to the fact that they both have been widely applied in the past decade. Accelerations collected by a wired sensory system on a large-scale laboratory bridge model are initially used as benchmark data after being added with a certain level of noise to account for the higher presence of this factor in SHM-oriented WSNs. From this source, a large number of simulations have been made to generate multiple DSE-corrupted datasets to facilitate statistical analyses. The results of this study show the robustness of FDD and the precautions needed for SSI-data family when dealing with DSE at a relaxed level. Finally, the combination of preferred OMA techniques and the use of the channel projection for the time-domain OMA technique to cope with DSE are recommended.
Resumo:
This article lays down the foundations of the renormalization group (RG) approach for differential equations characterized by multiple scales. The renormalization of constants through an elimination process and the subsequent derivation of the amplitude equation [Chen, Phys. Rev. E 54, 376 (1996)] are given a rigorous but not abstract mathematical form whose justification is based on the implicit function theorem. Developing the theoretical framework that underlies the RG approach leads to a systematization of the renormalization process and to the derivation of explicit closed-form expressions for the amplitude equations that can be carried out with symbolic computation for both linear and nonlinear scalar differential equations and first order systems but independently of their particular forms. Certain nonlinear singular perturbation problems are considered that illustrate the formalism and recover well-known results from the literature as special cases. © 2008 American Institute of Physics.
Resumo:
In a paper published in FSE 2007, a way of obtaining near-collisions and in theory also collisions for the FORK-256 hash function was presented [8]. The paper contained examples of near-collisions for the compression function, but in practice the attack could not be extended to the full function due to large memory requirements and computation time. In this paper we improve the attack and show that it is possible to find near-collisions in practice for any given value of IV. In particular, this means that the full hash function with the prespecified IV is vulnerable in practice, not just in theory. We exhibit an example near-collision for the complete hash function.
Resumo:
Background Person-to-person transmission of respiratory pathogens, including Pseudomonas aeruginosa, is a challenge facing many cystic fibrosis (CF) centres. Viable P aeruginosa are contained in aerosols produced during coughing, raising the possibility of airborne transmission. Methods Using purpose-built equipment, we measured viable P aeruginosa in cough aerosols at 1, 2 and 4 m from the subject (distance) and after allowing aerosols to age for 5, 15 and 45 min in a slowly rotating drum to minimise gravitational settling and inertial impaction (duration). Aerosol particles were captured and sized employing an Anderson Impactor and cultured using conventional microbiology. Sputum was also cultured and lung function and respiratory muscle strength measured. Results Nineteen patients with CF, mean age 25.8 (SD 9.2) years, chronically infected with P aeruginosa, and 10 healthy controls, 26.5 (8.7) years, participated. Viable P aeruginosa were detected in cough aerosols from all patients with CF, but not from controls; travelling 4 m in 17/18 (94%) and persisting for 45 min in 14/18 (78%) of the CF group. Marked inter-subject heterogeneity of P aeruginosa aerosol colony counts was seen and correlated strongly (r=0.73–0.90) with sputum bacterial loads. Modelling decay of viable P aeruginosa in a clinic room suggested that at the recommended ventilation rate of two air changes per hour almost 50 min were required for 90% to be removed after an infected patient left the room. Conclusions Viable P aeruginosa in cough aerosols travel further and last longer than recognised previously, providing additional evidence of airborne transmission between patients with CF.
Resumo:
Neuropsychological tests requiring patients to find a path through a maze can be used to assess visuospatial memory performance in temporal lobe pathology, particularly in the hippocampus. Alternatively, they have been used as a task sensitive to executive function in patients with frontal lobe damage. We measured performance on the Austin Maze in patients with unilateral left and right temporal lobe epilepsy (TLE), with and without hippocampal sclerosis, compared to healthy controls. Performance was correlated with a number of other neuropsychological tests to identify the cognitive components that may be associated with poor Austin Maze performance. Patients with right TLE were significantly impaired on the Austin Maze task relative to patients with left TLE and controls, and error scores correlated with their performance on the Block Design task. The performance of patients with left TLE was also impaired relative to controls; however, errors correlated with performance on tests of executive function and delayed recall. The presence of hippocampal sclerosis did not have an impact on maze performance. A discriminant function analysis indicated that the Austin Maze alone correctly classified 73.5% of patients as having right TLE. In summary, impaired performance on the Austin Maze task is more suggestive of right than left TLE; however, impaired performance on this visuospatial task does not necessarily involve the hippocampus. The relationship of the Austin Maze task with other neuropsychological tests suggests that differential cognitive components may underlie performance decrements in right versus left TLE.