982 resultados para relaxor ceramics


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Esforços constantes de pesquisa têm sido conduzidos na seleção de materiais, combinando propriedades de interesse (mecânicas, químicas, elétricas ou térmicas), versatilidade de uso, tempo de vida útil elevado e baixo custo de produção. A busca por materiais de elevado desempenho mecânico despertou grande interesse na pesquisa e desenvolvimento dos cerâmicos avançados com aplicações estruturais e funcionais, como o carbeto de silício. Entretanto, a porosidade ainda é vista como fator limitador do alto desempenho destes materiais visto que, acima de determinada porcentagem, reduz largamente sua resistência mecânica. Seu controle atualmente é realizado através de técnicas de alto custo, com a utilização de tomógrafos. Este trabalho buscou validar uma nova técnica, onde a porosidade foi avaliada através de processamento digital de imagens de microscopia ótica do material previamente lixado e polido em diversas profundidades, com controle dos parâmetros de lixamento e polimento. Esta nova metodologia mostrou-se apropriada e menos dispendiosa para a quantificação da porosidade do carbeto de silício, tendo sido validada para o estudo deste material.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sintered boron carbide is very hard, and can be an attractive material for wear-resistant components in critical applications. Previous studies of the erosion of less hard ceramics have shown that their wear resistance depends on the nature of the abrasive particles. Erosion tests were performed on a sintered boron carbide ceramic with silica, alumina and silicon carbide erodents. The different erodents caused different mechanisms of erosion, either by lateral cracking or small-scale chipping; the relative values of the hardness of the erodent and the target governed the operative mechanism. The small-scale chipping mechanism led to erosion rates typically an order of magnitude lower than the lateral fracture mechanism. The velocity exponents for erosion in the systems tested were similar to those seen in other work, except that measured with the 125 to 150 μm silica erodent. With this erodent the exponent was initially high, then decreased sharply with increasing velocity and became negative. It was proposed that this was due to deformation and fragmentation of the erodent particles. In the erosion testing of ceramics, the operative erosion mechanism is important. Care must be taken to ensure that the same mechanism is observed in laboratory testing as that which would be seen under service conditions, where the most common erodent is silica.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High quality large grain high Tc superconducting ceramics offer enormous potential as 'permanent' magnets and in magnetic screening applications at 77K. This requires sample dimensions -cm with uniform high critical current densities of the order 105 A/cm2 in applied magnetic fields of IT. We report a study of the magnetic characterisation of a typical large YBa2Cu3O7-δ grain, prepared by seeded peritectic solidification, and correlate the magnetically determined critical current density, Jc, with microstuctural features from different regions of the bulk sample. From this data we extract the temperature, field and positional dependence of the critical current density of the samples and the irreversibility line. We find that whilst the bulk sample exhibits a good Jc of order 104 A/cm2 (77K, 1T), the local Jc is strongly correlated with the sample microstructure towards the edge of the sample and more severely at the centre of the sample by the presence of SmBa2Cu3O7-δ seed crystal. © 1997 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carbon nanotubes (CNTs) are known to exhibit extraordinary mechanical properties such as high tensile strength, the highest Young modulus etc. These, combining with their large aspect ratio, make CNTs an excellent additive candidate to complement or substitute traditional carbon black or glass fiber fillers for the development of nano-reinforced composites. CNTs have thus far been used as additives in polymers, ceramics and metals to be pursued on practical applications of their composites. © 2010 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An innovative approach for fabricating pillar arrays for ultrasonic transducer applications is disclosed. It involves the preparation of concentrated piezoelectric lead zirconate titanate (PZT) suspensions in aqueous solutions of epoxy resin and its polymerization upon adding a polyamine based hardener. Zeta potential and rheological measurements revealed that 1wt.% dispersant, 20wt.% of epoxy resin and a hardener/epoxy resin ratio of 0.275mLg -1, were the optimized contents to obtain strong PZT samples with high green strength (35.21±0.39MPa). Excellent ellipsoidal and semi-circle shaped pillar arrays presenting lateral dimensions lower than 10μm and 100μm height were successfully achieved. The organics burning off was conducted at 500°C for 2h at a heating rate of 1°Cmin -1. Sintering was then carried out in the same heating cycle at 1200°C for 1h. The microstructures of the green and sintered ceramics were homogeneous and no large defects could be detected. © 2011 Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Laser micro machining is fast gaining popularity as a method of fabricating micro scale structures. Lasers have been utilised for micro structuring of metals, ceramics and glass composites and with advances in material science, new materials are being developed for micro/nano products used in medical, optical, and chemical industries. Due to its favourable strength to weight ratio and extreme resistance to chemical attack, glassy carbon is a new material that offers many unique properties for micro devices. The laser machining of SIGRADUR® G grade glassy carbon was characterised using a 1065 nm wavelength Ytterbium doped pulsed fiber laser. The laser system has a selection of 25 preset waveforms with optimised peak powers for different pulsing frequencies. The optics provide spot diameter of 40 μm at the focus. The effect of fluence, transverse overlap and pulsing frequency (as waveform) on glassy carbon was investigated. Depth of removal and surface roughness were measured as machining quality indicators. The damage threshold fluence was determined to be 0.29 J/cm2 using a pulsing frequency of 250 kHz and a pulse width of 18 ns (waveform 3). Ablation rates of 17 < V < 300 μm3/pulse were observed within a fluence range of 0.98 < F < 2.98 J/cm2. For the same fluence variation, 0.6 μm to 6.8 μm deep trenches were machined. Trench widths varied from 29 μm at lower fluence to 47 μm at the higher fluence. Square pockets, 1 mm wide, were machined to understand the surface machining or milling. The depth of removal using both waveform 3 and 5 showed positive correlation with fluence, with waveform 5 causing more removal than waveform 3 for the same fluence. Machined depths varied from less than 1 μm to nearly 40 μm. For transverse overlap variation using waveform 3, the best surface finish with Rz = 1.1 μm was obtained for fluence 0.792 J/cm2 for transverse overlap of 1 μm, 6 μm, and 9 μm at machined depths of 22.9 μm, 6.6 μm, and 4.6 μm respectively. For fluence of 1.426 J/cm2, the best surface finish with Rz = 1.2 μm was obtained for transverse overlap of 6 μm, and 9 μm at machined depths of 12.46 μm, and 8.6 μm respectively. The experimental data was compiled as machining charts and utilised for fabricating a micro-embossing glassy carbon master toolsets as a capability demonstration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have studied numerically and experimentally the magnetic flux penetration in high-Tc superconducting tube subjected to a uniform magnetic field parallel to its long axis. This study is carried in view of designing low-frequency magnetic shields by exploiting the diamagnetic properties of high-Tc superconducting ceramics. We have measured the field attenuation for applied magnetic fields in the frequency range 5 mHz-0.1 Hz by Hall probe measurements and at audio frequencies using a sensing coil. A simple 1D analysis using the Kim critical state model was found to be able to reproduce the experimental data satisfactorily. We have also determined the phase shift between the internal and the applied field both experimentally and numerically. Finally, we have studied the sweep rate dependence of the magnetic shielding properties, using data recorded either at several constant sweep rates dB /dt or at several AC fields of various amplitudes and frequencies. Both methods agree with each other and lead to a n-value of the E ∼ Jn law equal to ∼40 at 77 K. © 2009 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Widespread approaches to fabricate surfaces with robust micro- and nanostructured topographies have been stimulated by opportunities to enhance interface performance by combining physical and chemical effects. In particular, arrays of asymmetric surface features, such as arrays of grooves, inclined pillars, and helical protrusions, have been shown to impart unique anisotropy in properties including wetting, adhesion, thermal and/or electrical conductivity, optical activity, and capability to direct cell growth. These properties are of wide interest for applications including energy conversion, microelectronics, chemical and biological sensing, and bioengineering. However, fabrication of asymmetric surface features often pushes the limits of traditional etching and deposition techniques, making it challenging to produce the desired surfaces in a scalable and cost-effective manner. We review and classify approaches to fabricate arrays of asymmetric 2D and 3D surface features, in polymers, metals, and ceramics. Analytical and empirical relationships among geometries, materials, and surface properties are discussed, especially in the context of the applications mentioned above. Further, opportunities for new fabrication methods that combine lithography with principles of self-assembly are identified, aiming to establish design principles for fabrication of arbitrary 3D surface textures over large areas. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanoindentation is ideal for the characterization of inhomogeneous biological materials. However, the use of nanoindentation techniques in biological systems is associated with some distinctively different techniques and challenges. For example, engineering materials used in the microelectronics industry (e.g. ceramics and metals) for which the technique was developed, are relatively stiff and exhibit time-independent mechanical responses. Biological materials, on the other hand, exhibit time-dependent behavior, and can span a range of stiffness regimes from moduli of Pa to GPa - eight to nine orders of magnitude. As such, there are differences in the selection of instrumentation, tip geometry, and data analysis in comparison with the "black box" nanoindentation techniques as sold by commercial manufacturers. The use of scanning probe equipment (atomic force miscroscopy) is also common for small-scale indentation of soft materials in biology. The book is broadly divided into two parts. The first part presents the "basic science" of nanoindentation including the background of contact mechanics underlying indentation technique, and the instrumentation used to gather mechanical data. Both the mechanics background and the instrumentation overview provide perspectives that are optimized for biological applications, including discussions on hydrated materials and adaptations for low-stiffness materials. The second part of the book covers the applications of nanoindentation technique in biological materials. Included in the coverage are mineralized and nonmineralized tissues, wood and plant tissues, tissue-engineering substitute materials, cells and membranes, and cutting-edge applications at molecular level including the use of functionalized tips to probe specific molecular interactions (e.g. the ligand-receptor binding). The book concludes with a concise summary and an insightful forecast of the future highlighting the current challenges. © 2011 by Pan Stanford Publishing Pte. Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A solution processed aluminum-doped zinc oxide (AZO)/multi-walled carbon nanotube (MWCNT) nanocomposite thin film has been developed offering simultaneously high optical transparency and low electrical resistivity, with a conductivity figure of merit (σDC/σopt) of ~75-better than PEDOT:PSS and many graphene derivatives. The reduction in sheet resistance of thin films of pristine MWCNTs is attributed to an increase in the conduction pathways within the sol-gel derived AZO matrix and reduced inter-MWCNT contact resistance. Films have been extensively characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), X-ray diffractometry (XRD), photoluminescence (PL), and ultraviolet-visible (UV-vis) spectroscopy. © 2013 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La2Zr2O7是一种近年来才提出的新型热障涂层材料,该材料熔点高,在熔点以下不发生相变,热导率低,抗烧结及没有氧传输发生,这些特点使得它作为一种高温下应用的热障涂层材料越来越引起人们的重视。但是,由于该材料的热膨胀系数和断裂韧性比较低,它的实际应用受到了限制。 在本论文中,使用高压烧结的方法获得了致密化的纳米La2Zr2O7块体材料,并对其断裂韧性和热膨胀系数进行了研究。得到的La2Zr2O7纳米材料的断裂韧性和热膨胀系数分别为1.98MPam1/2和9.6×10-6K-1 (200-1000℃),这些数值明显高于非纳米的La2Zr2O7陶瓷(断裂韧性和热膨胀系数分别为1.40 MPam1/2 和 9.1×10-6 K-1,该结果表明纳米化是一种提高材料断裂韧性和热膨胀系数的有效方法。在La2Zr2O7纳米粉末中加入8YSZ纳米颗粒,高压烧结后使其颗粒充分生长,在得到的复相化合物中观察到形成了类似棒状晶体的自增韧相,使得复合材料的断裂韧性(1.88 MPam1/2)比La2Zr2O7有所提高,甚至超过了同样条件下制备的8YSZ样品的断裂韧性。 La2Zr2O7的断裂韧性也可以通过在基体中添加BaTiO3铁电材料得到明显的提高。当添加BaTiO3的体积含量达到10vol%时,4.5GPa,1450℃高压烧结10min得到的复合材料断裂韧性达1.98 MPam1/2,明显高于同条件下烧结的La2Zr2O7 (1.60MPam1/2)。应力诱导下BaTiO3的电畴转向是主要的增韧原因。随着BaTiO3颗粒添加的体积含量增加,复相化合物的热膨胀系数也明显提高。当掺杂20vol%BaTiO3时,得到的复合材料平均热膨胀系数达到10.2×10-6K-1 (150~1200℃)。 我们通过在4.5GPa, 1650℃高压烧结5min的方法还获得了掺杂YAG纳米颗粒的La2Zr2O7纳米复相陶瓷。在室温下测量了材料的维氏硬度,并通过压痕裂纹长度计算出了材料的断裂韧性。随着YAG纳米颗粒体积含量的增加,纳米复相陶瓷的断裂韧性和维氏硬度都依次增加,当添加20vol%的YAG纳米颗粒时达到最大,分别为1.93 MPam1/2和11.45GPa。断裂韧性增加的机理可归结为以下三点:一是YAG纳米颗粒的添加提高了La2Zr2O7基体的晶界强度,二是基体晶粒尺寸变化的影响,三是YAG纳米颗粒对裂纹的偏转和钉扎作用。添加微米YAG颗粒的复相化合物因为和纳米复相陶瓷具有不同的增韧机制,因此断裂韧性的变化趋势也不相同,在掺入10vol%的YAG微米颗粒时,复合材料的断裂韧性最大,而后降低,当掺入YAG微米粒子的体积含量达到20vol%时,断裂韧性甚至低于La2Zr2O7。 从20世纪90年代开始,电纺作为一种合成纤维的办法越来越吸引人们的注意。其合成的纤维长度长,直径均匀,并且组成范围很广。最初,电纺只是被用来合成一些有机聚合物的纤维,最近,很多研究组开始致力于使用电纺的方法合成复合纤维或者陶瓷纤维。 在本论文中,我们使用电纺的方法获得了La2Zr2O7纳米纤维和SiC单晶纳米线。1000℃煅烧得到的La2Zr2O7纳米纤维具有烧绿石结构,直径在200~500nm之间。同样的温度煅烧时得到的La2Zr2O7纳米纤维的比表面积要明显高于粉末样品的,表明纤维的抗烧结性能比粉末的高。得到的SiC纳米线直径在50~100nm之间,表面有一约5nm厚的无定形的SiO2薄层。 使用电纺的方法,恰当的控制煅烧条件,我们获得了La2Ce2O7, La2(Zr0.745Ce0.386)2O7.524和8YSZ中空纤维。这种中空结构减小了粒子之间的接触面积,提高了材料的抗烧结性能。在扫描电镜分析的基础上,我们总结了这些中空纤维的形成过程。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PZT陶瓷粉体的制备和研究。用溶胶一凝胶法制备了错钦酸铅Pb(Zr_(0.52)Ti_(0.48))O_3(PZT),研究了溶剂乙二醇单甲醚和水的比例对PZT的晶化温度和晶粒尺寸的影响,结果表明,随溶剂比例的增大,PZT粉体的晶化温度升高晶粒尺寸增大,当V(C_3H_9O_2)/V(H_2O)=4.47时,不仅缩短了溶胶-凝胶过程的时间,且得到的PZT粉体晶化温度低(443℃),晶粒的粒径分布集中(60-70nm)。PZT掺杂压电陶瓷的制备和研究。用同一主族元素对PZT进行掺杂改性实验,制备了Ca-PZT,Sr-PZT,Ba-PZT三个系列的压电陶瓷体系,其中每个体系中又包含1%、3%、5%、7%、9%(10%,11%)不同的掺杂量。经过压片,蒸镀电极,极化处理后测定其由,常数,结果表明,Ba离子的半径是最适合掺杂的离子半径。PZT和PbTIO。(PT)稳定溶胶的制备。在溶胶形成过程中,通过调整溶剂乙二醇单甲醚和水的比例,并加入适当量的乙酞丙酮作稳定剂,在有水体系下制备稳定的PZT和PT溶胶前驱体。该方法省略了制备中的蒸馏过程,简化了PZT和PT稳定溶胶的制备工艺。PZT铁电薄膜的制备。用自制的溶胶进行旋涂制膜,制备了膜层厚度不同的PZT和PT-PZT薄膜,在不同的锻烧温度,锻烧时间下处理为晶态膜,并对晶态膜进行表征,证明获得了钙钦矿结构的PZT晶态膜。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ilmenite-type (Zn1-xCdx)TiO3 (0 <= x <= 0.15 and 0.8 <= x <= 1.0) was synthesized by a modified sol-gel route including the Pechini process via two-step heat treatments. The thermal stability of (Zn1-xCdx)TiO3 depended on the amount of cadmium content. The as-synthesized (Zn1-xCdx)TiO3 (0 <= x <= 0.15 and 0.8 <= x <= 1.0) showed higher thermal stability than that of ZnTiO3. The variation of the dielectric constant of all synthesized (Zn1-xCdx)TiO3 samples for all measurement frequencies showed a similar tendency.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxide ceramics with high sintering-resistance above 1473 K have very important applications in thermal barrier coatings (TBCs), catalytic combustion and high-temperature structural materials. Lanthanum zirconate (La2Zr2O7, LZ) is an attractive TBC material which has higher sintering-resistance than yttria stabilized zirconia (YSZ), and this property could be further improved by the proper addition of ceria.