991 resultados para reflection theory
Resumo:
This thesis presents point-contact measurements between superconductors (Nb, Ta, Sn,Al, Zn) and ferromagnets (Co, Fe, Ni) as well as non-magnetic metals (Ag, Au, Cu, Pt).The point contacts were fabricated using the shear method. The differential resistanceof the contacts was measured either in liquid He at 4.2 K or in vacuum in a dilutionrefrigerator at varying temperature down to 0.1 K. The contact properties were investigatedas function of size and temperature. The measured Andreev-reflection spectrawere analysed in the framework of the BTK model – a three parameter model that describescurrent transport across a superconductor - normal conductor interface. Theoriginal BTK model was modified to include the effects of spin polarization or finitelifetime of the Cooper pairs. Our polarization values for the ferromagnets at 4.2 K agree with the literature data, but the analysis was ambiguous because the experimental spectra both with ferromagnets and non-magnets could be described equally well either with spin polarization or finite lifetime effects in the BTK model. With the polarization model the Z parametervaries from almost 0 to 0.8 while the lifetime model produces Z values close to 0.5. Measurements at lower temperatures partly lift this ambiguity because the magnitude of thermal broadening is small enough to separate lifetime broadening from the polarization. The reduced magnitude of the superconducting anomalies for Zn-Fe contacts required an additional modification of the BTK model which was implemented as a scaling factor. Adding this parameter led to reduced polarization values. However, reliable data is difficult to obtain because different parameter sets produce almost identical spectra.
Resumo:
The present study compares the performance of stochastic and fuzzy models for the analysis of the relationship between clinical signs and diagnosis. Data obtained for 153 children concerning diagnosis (pneumonia, other non-pneumonia diseases, absence of disease) and seven clinical signs were divided into two samples, one for analysis and other for validation. The former was used to derive relations by multi-discriminant analysis (MDA) and by fuzzy max-min compositions (fuzzy), and the latter was used to assess the predictions drawn from each type of relation. MDA and fuzzy were closely similar in terms of prediction, with correct allocation of 75.7 to 78.3% of patients in the validation sample, and displaying only a single instance of disagreement: a patient with low level of toxemia was mistaken as not diseased by MDA and correctly taken as somehow ill by fuzzy. Concerning relations, each method provided different information, each revealing different aspects of the relations between clinical signs and diagnoses. Both methods agreed on pointing X-ray, dyspnea, and auscultation as better related with pneumonia, but only fuzzy was able to detect relations of heart rate, body temperature, toxemia and respiratory rate with pneumonia. Moreover, only fuzzy was able to detect a relationship between heart rate and absence of disease, which allowed the detection of six malnourished children whose diagnoses as healthy are, indeed, disputable. The conclusion is that even though fuzzy sets theory might not improve prediction, it certainly does enhance clinical knowledge since it detects relationships not visible to stochastic models.
Resumo:
This thesis in caring science didactics is based on a thinking, where the fundamental basis for the didactic is science-based, i.e. it does not emanate from the nursing profession but brings forward a didactic that grows out of caring science and its core substance and ethos. This view on didactics arises from the caritative theory developed by Eriksson. The overall aim of the study is to clarify the meaning and essence of understanding, as well as to explore and deepen the understanding of student nurses' processes of understanding and becoming with the intention of developing a theory model for caring didactics. The overarching research questions are: What is the essence of understanding (of caring science knowledge)? What are the possibilities and importance of understanding in the appropriation of caring science? What characterizes and impels the process of becoming? The thesis consists of four sub studies and a summary section. The overall methodological approach is hermeneutic involving quantitative as well as qualitative methods. The data for the study has been collected through a longitudinal research project that followed student nurses at three universities during their entire education. The empirical sub studies form the basis for the interpreted knowledge that is formulated in the new understanding. This new understanding have, through additional theory-charging with the theory fragments from Gadamer, generated the heuristic synthesis which is illustrated in the theory model. The findings shows that understanding can be described as something unlimited, as an endless movement, which can be illustrated as a lying eighth, a lemniscate. The lemiscate of understanding is characterized by seeing, knowing and becoming and consists of seven differently named phases; the acquired horizon of understanding, the encounter of horizons, the dialogue of horizons, the fusion of horizons, application, reflection and shaping a new horizon of understanding. Bildung (formation), is the ultimate imprint of the endless spiral movement of understanding. Ethos and arête constitute the hubs around which the lemniscate of understanding circles. These include the spirit and driving force that the student carries within. The caring culture encloses the lemniscate of understanding. The caring culture provides the life space of understanding and the prevailing basic values are evinced in the culture.
Resumo:
Coronary artery disease (CAD) is a worldwide leading cause of death. The standard method for evaluating critical partial occlusions is coronary arteriography, a catheterization technique which is invasive, time consuming, and costly. There are noninvasive approaches for the early detection of CAD. The basis for the noninvasive diagnosis of CAD has been laid in a sequential analysis of the risk factors, and the results of the treadmill test and myocardial perfusion scintigraphy (MPS). Many investigators have demonstrated that the diagnostic applications of MPS are appropriate for patients who have an intermediate likelihood of disease. Although this information is useful, it is only partially utilized in clinical practice due to the difficulty to properly classify the patients. Since the seminal work of Lotfi Zadeh, fuzzy logic has been applied in numerous areas. In the present study, we proposed and tested a model to select patients for MPS based on fuzzy sets theory. A group of 1053 patients was used to develop the model and another group of 1045 patients was used to test it. Receiver operating characteristic curves were used to compare the performance of the fuzzy model against expert physician opinions, and showed that the performance of the fuzzy model was equal or superior to that of the physicians. Therefore, we conclude that the fuzzy model could be a useful tool to assist the general practitioner in the selection of patients for MPS.
Resumo:
This thesis studies metamaterial-inspired mirrors which provide the most general control over the amplitude and phase of the reflected wavefront. The goal is to explore practical possibilities in designing fully reflective electromagnetic structures with full control over reflection phase. The first part of the thesis describes a planar focusing metamirror with the focal distance less than the operating wavelength. Its practical applicability from the viewpoint of aberrations when the incident angle deviates from the normal one is verified numerically and experimentally. The results indicate that the proposed focusing metamirror can be efficiently employed in many different applications due to its advantages over other conventional mirrors. In the second part of the thesis a new theoretical concept of reflecting metasurface operation is introduced based on Huygens’ principle. This concept in contrast to known approaches takes into account all the requirements of perfect metamirror operation. The theory shows a route to improve the previously proposed metamirrors through tilting the individual inclusions of the structure at a chosen angle from normal. It is numerically tested and the results demonstrate improvements over the previous design.
Resumo:
The topic of the present doctoral dissertation is the analysis of the phonological and tonal structures of a previously largely undescribed language, namely Samue. It is a Gur language belonging to the Niger-Congo language phulym, which is spoken in Burkina Faso. The data were collected during the fieldwork period in a Sama village; the data include 1800 lexical items, thousands of elicited sentences and 30 oral texts. The data were first transcribed phonetically and then the phonological and tonal analyses were conducted. The results show that the phonological system of Samue with the phoneme inventory and phonological processes has the same characteristics as other related Gur languages, although some particularities were found, such as the voicing and lenition of stop consonants in medial positions. Tonal analysis revealed three level tones, which have both lexical and grammatical functions. A particularity of the tonal system is the regressive Mid tone spreading in the verb phrase. The theoretical framework used in the study is Optimality theory. Optimality theory is rarely used in the analysis of an entire language system, and thus an objective was to see whether the theory was applicable to this type of work. Within the tonal analysis especially, some language specific constraints had to be created, although the basic Optimality Theory principle is the universal nature of the constraints. These constraints define the well-formedness of the language structures and they are differently ranked in different languages. This study gives new insights about typological phenomena in Gur languages. It is also a fundamental starting point for the Samue language in relation to the establishment of an orthography. From the theoretical point of view, the study proves that Optimality theory is largely applicable in the analysis of an entire sound system.
Resumo:
Optimization of quantum measurement processes has a pivotal role in carrying out better, more accurate or less disrupting, measurements and experiments on a quantum system. Especially, convex optimization, i.e., identifying the extreme points of the convex sets and subsets of quantum measuring devices plays an important part in quantum optimization since the typical figures of merit for measuring processes are affine functionals. In this thesis, we discuss results determining the extreme quantum devices and their relevance, e.g., in quantum-compatibility-related questions. Especially, we see that a compatible device pair where one device is extreme can be joined into a single apparatus essentially in a unique way. Moreover, we show that the question whether a pair of quantum observables can be measured jointly can often be formulated in a weaker form when some of the observables involved are extreme. Another major line of research treated in this thesis deals with convex analysis of special restricted quantum device sets, covariance structures or, in particular, generalized imprimitivity systems. Some results on the structure ofcovariant observables and instruments are listed as well as results identifying the extreme points of covariance structures in quantum theory. As a special case study, not published anywhere before, we study the structure of Euclidean-covariant localization observables for spin-0-particles. We also discuss the general form of Weyl-covariant phase-space instruments. Finally, certain optimality measures originating from convex geometry are introduced for quantum devices, namely, boundariness measuring how ‘close’ to the algebraic boundary of the device set a quantum apparatus is and the robustness of incompatibility quantifying the level of incompatibility for a quantum device pair by measuring the highest amount of noise the pair tolerates without becoming compatible. Boundariness is further associated to minimum-error discrimination of quantum devices, and robustness of incompatibility is shown to behave monotonically under certain compatibility-non-decreasing operations. Moreover, the value of robustness of incompatibility is given for a few special device pairs.
Resumo:
The aim of this Master’s Thesis was to examine the determinants of intention and behavior of playing sports betting games in order to explain the intention to play in a more precise way and to be able to understand the behavior of playing. The theory of planned behavior was applied in explaining the intention of young Finnish adults aged 18 to 34. A quantitative research method was applied and an online survey was sent to the students of Lappeenranta University of Technology and to the subscribers of Urheilulehti in order to reach a sample that present the young population of Finland. The theory of the study focused on the theory of planned behavior and its antecedents, attitude towards behavior, subjective norms, perceived behavioral control as well as motivation. By analyzing the data, causal relationships were found through which the explanation of intention was possible. The results showed that attitude towards playing, subjective norms, perceived behavioral control and motivation impact the formation of intention significantly. The results also indicated that intention impacts significantly to the playing frequency.