909 resultados para process concentrated work
Resumo:
Paper submitted to the 44th European Congress of the European Regional Science Association, Porto, 25-29 August 2004.
Resumo:
This paper presents a new approach to the delineation of local labor markets based on evolutionary computation. The aim of the exercise is the division of a given territory into functional regions based on travel-to-work flows. Such regions are defined so that a high degree of inter-regional separation and of intra-regional integration in both cases in terms of commuting flows is guaranteed. Additional requirements include the absence of overlap between delineated regions and the exhaustive coverage of the whole territory. The procedure is based on the maximization of a fitness function that measures aggregate intra-region interaction under constraints of inter-region separation and minimum size. In the experimentation stage, two variations of the fitness function are used, and the process is also applied as a final stage for the optimization of the results from one of the most successful existing methods, which are used by the British authorities for the delineation of travel-to-work areas (TTWAs). The empirical exercise is conducted using real data for a sufficiently large territory that is considered to be representative given the density and variety of travel-to-work patterns that it embraces. The paper includes the quantitative comparison with alternative traditional methods, the assessment of the performance of the set of operators which has been specifically designed to handle the regionalization problem and the evaluation of the convergence process. The robustness of the solutions, something crucial in a research and policy-making context, is also discussed in the paper.
Resumo:
The optimal integration between heat and work may significantly reduce the energy demand and consequently the process cost. This paper introduces a new mathematical model for the simultaneous synthesis of heat exchanger networks (HENs) in which the pressure levels of the process streams can be adjusted to enhance the heat integration. A superstructure is proposed for the HEN design with pressure recovery, developed via generalized disjunctive programming (GDP) and mixed-integer nonlinear programming (MINLP) formulation. The process conditions (stream temperature and pressure) must be optimized. Furthermore, the approach allows for coupling of the turbines and compressors and selection of the turbines and valves to minimize the total annualized cost, which consists of the operational and capital expenses. The model is tested for its applicability in three case studies, including a cryogenic application. The results indicate that the energy integration reduces the quantity of utilities required, thus decreasing the overall cost.
Resumo:
The optimal integration of work and its interaction with heat can represent large energy savings in industrial plants. This paper introduces a new optimization model for the simultaneous synthesis of work exchange networks (WENs), with heat integration for the optimal pressure recovery of process gaseous streams. The proposed approach for the WEN synthesis is analogous to the well-known problem of synthesis of heat exchanger networks (HENs). Thus, there is work exchange between high-pressure (HP) and low-pressure (LP) streams, achieved by pressure manipulation equipment running on common axes. The model allows the use of several units of single-shaft-turbine-compressor (SSTC), as well as stand-alone compressors, turbines and valves. Helper motors and generators are used to respond to any demand and excess of energy. Moreover, between the WEN stages the streams are sent to the HEN to promote thermal recovery, aiming to enhance the work integration. A multi-stage superstructure is proposed to represent the process. The WEN superstructure is optimized in a mixed-integer nonlinear programming (MINLP) formulation and solved with the GAMS software, with the goal of minimizing the total annualized cost. Three examples are conducted to verify the accuracy of the proposed method. In all case studies, the heat integration between WEN stages is essential to improve the pressure recovery, and to reduce the total costs involved in the process.
Resumo:
The requirements for edge protection systems on most sloped work surfaces (class C, according to EN 13374-2013 code) in construction works are studied in this paper. Maximum deceleration suffered by a falling body and maximum deflection of the protection system were analyzed through finite-element models and confirmed through full-scale experiments. The aim of this work is to determine which value for deflection system entails a safe deceleration for the human body. This value is compared with the requirements given by the current version of EN 13374-2013. An additional series of experiments were done to determine the acceleration linked to minimum deflection required by code (200 mm) during the retention process. According to the obtained results, a modification of this value is recommended. Additionally, a simple design formula for this falling protection system is proposed as a quick tool for the initial steps of design.
Resumo:
This paper introduces a new optimization model for the simultaneous synthesis of heat and work exchange networks. The work integration is performed in the work exchange network (WEN), while the heat integration is carried out in the heat exchanger network (HEN). In the WEN synthesis, streams at high-pressure (HP) and low-pressure (LP) are subjected to pressure manipulation stages, via turbines and compressors running on common shafts and stand-alone equipment. The model allows the use of several units of single-shaft-turbine-compressor (SSTC), as well as helper motors and generators to respond to any shortage and/or excess of energy, respectively, in the SSTC axes. The heat integration of the streams occurs in the HEN between each WEN stage. Thus, as the inlet and outlet streams temperatures in the HEN are dependent of the WEN design, they must be considered as optimization variables. The proposed multi-stage superstructure is formulated in mixed-integer nonlinear programming (MINLP), in order to minimize the total annualized cost composed by capital and operational expenses. A case study is conducted to verify the accuracy of the proposed approach. The results indicate that the heat integration between the WEN stages is essential to enhance the work integration, and to reduce the total cost of process due the need of a smaller amount of hot and cold utilities.
Resumo:
This paper introduces a new mathematical model for the simultaneous synthesis of heat exchanger networks (HENs), wherein the handling pressure of process streams is used to enhance the heat integration. The proposed approach combines generalized disjunctive programming (GDP) and mixed-integer nonlinear programming (MINLP) formulation, in order to minimize the total annualized cost composed by operational and capital expenses. A multi-stage superstructure is developed for the HEN synthesis, assuming constant heat capacity flow rates and isothermal mixing, and allowing for streams splits. In this model, the pressure and temperature of streams must be treated as optimization variables, increasing further the complexity and difficulty to solve the problem. In addition, the model allows for coupling of compressors and turbines to save energy. A case study is performed to verify the accuracy of the proposed model. In this example, the optimal integration between the heat and work decreases the need for thermal utilities in the HEN design. As a result, the total annualized cost is also reduced due to the decrease in the operational expenses related to the heating and cooling of the streams.
Resumo:
In the past years, an important volume of research in Natural Language Processing has concentrated on the development of automatic systems to deal with affect in text. The different approaches considered dealt mostly with explicit expressions of emotion, at word level. Nevertheless, expressions of emotion are often implicit, inferrable from situations that have an affective meaning. Dealing with this phenomenon requires automatic systems to have “knowledge” on the situation, and the concepts it describes and their interaction, to be able to “judge” it, in the same manner as a person would. This necessity motivated us to develop the EmotiNet knowledge base — a resource for the detection of emotion from text based on commonsense knowledge on concepts, their interaction and their affective consequence. In this article, we briefly present the process undergone to build EmotiNet and subsequently propose methods to extend the knowledge it contains. We further on analyse the performance of implicit affect detection using this resource. We compare the results obtained with EmotiNet to the use of alternative methods for affect detection. Following the evaluations, we conclude that the structure and content of EmotiNet are appropriate to address the automatic treatment of implicitly expressed affect, that the knowledge it contains can be easily extended and that overall, methods employing EmotiNet obtain better results than traditional emotion detection approaches.
Resumo:
The reaction of various 1-pivaloyl-1H-tetrazoles with excess lithium and a catalytic amount of naphthalene (20 mol%) led, after treatment with methanol, to the corresponding free tetrazoles through reductive C–N bond cleavage. This methodology represents a reasonable alternative to other nonreductive protocols.
Resumo:
This paper presents a new mathematical programming model for the retrofit of heat exchanger networks (HENs), wherein the pressure recovery of process streams is conducted to enhance heat integration. Particularly applied to cryogenic processes, HENs retrofit with combined heat and work integration is mainly aimed at reducing the use of expensive cold services. The proposed multi-stage superstructure allows the increment of the existing heat transfer area, as well as the use of new equipment for both heat exchange and pressure manipulation. The pressure recovery of streams is carried out simultaneously with the HEN design, such that the process conditions (streams pressure and temperature) are variables of optimization. The mathematical model is formulated using generalized disjunctive programming (GDP) and is optimized via mixed-integer nonlinear programming (MINLP), through the minimization of the retrofit total annualized cost, considering the turbine and compressor coupling with a helper motor. Three case studies are performed to assess the accuracy of the developed approach, including a real industrial example related to liquefied natural gas (LNG) production. The results show that the pressure recovery of streams is efficient for energy savings and, consequently, for decreasing the HEN retrofit total cost especially in sub-ambient processes.
Resumo:
The research developed in this work consists in proposing a set of techniques for management of social networks and their integration into the educational process. The proposals made are based on assumptions that have been proven with simple examples in a real scenario of university teaching. The results show that social networks have more capacity to spread information than educational web platforms. Moreover, educational social networks are developed in a context of freedom of expression intrinsically linked to Internet freedom. In that context, users can write opinions or comments which are not liked by the staff of schools. However, this feature can be exploited to enrich the educational process and improve the quality of their achievement. The network has covered needs and created new ones. So, the figure of the Community Manager is proposed as agent in educational context for monitoring network and aims to channel the opinions and to provide a rapid response to an academic problem.
Resumo:
The implantation of new university degrees within the European Higher Education Area implies the need of innovative methodologies in teaching and learning to improve the skills and competencies of students and to answer the growing needs that society continuously demands to heritage management experts. The present work shows an application of the teaching methodology proposed during the international workshop entitled “I International Planning Preservation Workshop. Learning from Al Andalus”, which included the participation of the University of Alicante and Granada, Università Politecnico di Milano and Hunter College City University of New York; where we tried to dissolve traditional boundaries derived of interuniversity cooperation programs. The main objective of the workshop was to discuss and debate the role of urban Historical Centers within the Global Heritage by the integrated work through multidisciplinary teams and the creation of a permanent international working group between these universities to both teach and research. The methodology of this workshop was very participatory and considered the idea of a new learning process generated by "a journey experience." A trip from global to local (from the big city to the small village) but also a trip from the local (historical) part of a big city to the global dimension of contemporary historical villages identified by the students through a system of exhibition panels in affinity groups, specific projects proposed by lecturers and teachers or the generation of publications in various areas (texts, photographs, videos, etc.). So, the participation of the students in this multidisciplinary meeting has enhanced their capacity for self-criticism in several disciplines and has promoted their ability to perform learning and research strategies in an autonomous way. As a result, it has been established a permanent international work structure for the development of projects of the Historical City. This relationship has generated the publication of several books whose contents have reflected the conclusions developed in the workshop and several teaching proposals shared between those institutions. All these aspects have generated a new way of understanding the teaching process through a journey, in order to study the representative role of university in the historical heritage and to make students (from planning, heritage management, architecture, geography, sociology, history or engineering areas) be compromised on searching strategies for sustainable development in the Contemporary City.
Resumo:
The construction industry is characterised by fragmentation and suffers from lack of collaboration, often adopting adversarial working practices to achieve deliverables. For the UK Government and construction industry, BIM is a game changer aiming to rectify this fragmentation and promote collaboration. However it has become clear that there is an essential need to have better controls and definitions of both data deliverables and data classification. Traditional methods and techniques for collating and inputting data have shown to be time consuming and provide little to improve or add value to the overall task of improving deliverables. Hence arose the need in the industry to develop a Digital Plan of Work (DPoW) toolkit that would aid the decision making process, providing the required control over the project workflows and data deliverables, and enabling better collaboration through transparency of need and delivery. The specification for the existing Digital Plan of Work (DPoW) was to be, an industry standard method of describing geometric, requirements and data deliveries at key stages of the project cycle, with the addition of a structured and standardised information classification system. However surveys and interviews conducted within this research indicate that the current DPoW resembles a digitised version of the pre-existing plans of work and does not push towards the data enriched decision-making abilities that advancements in technology now offer. A Digital Framework is not simply the digitisation of current or historic standard methods and procedures, it is a new intelligent driven digital system that uses new tools, processes, procedures and work flows to eradicate waste and increase efficiency. In addition to reporting on conducted surveys above, this research paper will present a theoretical investigation into usage of Intelligent Decision Support Systems within a digital plan of work framework. Furthermore this paper will present findings on the suitability to utilise advancements in intelligent decision-making system frameworks and Artificial Intelligence for a UK BIM Framework. This should form the foundations of decision-making for projects implemented at BIM level 2. The gap identified in this paper is that the current digital toolkit does not incorporate the intelligent characteristics available in other industries through advancements in technology and collation of vast amounts of data that a digital plan of work framework could have access to and begin to develop, learn and adapt for decision-making through the live interaction of project stakeholders.
Resumo:
A disciplina matemática e o tema sustentabilidade podem ser muito bem trabalhados pelos docentes da área de exatas. Pois, saber quantificar, calcular e associar o consumo e o impacto ambiental através de dados numéricos é uma possibilidade que pode ser desenvolvida em sala de aula. Saber interpretar e construir gráficos de colunas são outras competências e habilidades presentes na ciência da matemática. Compreender conceitos, estratégias e situações matemáticas numéricas para aplicá-los a situações diversas no contexto das ciências, da tecnologia e da atividade cotidiana se faz necessário. E também, reconhecer, pela leitura de textos apropriados, a importância da Matemática na elaboração de proposta de intervenção solidária na realidade. Dessa forma, conhecer o ambiente em que vivemos, verificar a influência do homem na Natureza e quais ações deverão ser tomadas pensando nas futuras gerações é um despertar para o consumo consciente. O que acarreta como possibilidade o retorno à natureza de recursos utilizados de maneira correta. Conhecer uma conta de luz detalhada, aprender a calcular o consumo mensal de Kwh e diminuir o consumo de energia elétrica através da mudança de hábitos são exemplos cotidianos em que a matemática se faz presente. Relacionar a matemática ao estudo do meio ambiente proporciona através dos números mensurar os prejuízos e projetar soluções, torna a aprendizagem construtiva, podendo se constituir num comportamento cotidiano ou numa ação educativa para formar uma consciência ecológica dentro de indicadores reais. A aprendizagem se torna significativa quando relacionada ao cotidiano do aluno no sentido de mostrar o meio ambiente a que estão inseridos para que possam ser agentes transformadores, através da mudança de hábitos e principalmente desenvolvendo suas habilidades matemáticas. Sendo assim, o processo de ensino aprendizagem matemática-meio ambiente é realizado no sentido de oportunizar o conhecimento do mundo e domínio da natureza, com base nas linguagens matemáticas, criando-se condições de melhorar a capacidade de agir na sociedade, assumindo ações permanentes concentradas em um desenvolvimento sustentável para a continuidade da vida na Terra. Nesse diapasão, é possível desenvolver trabalhos pedagógicos “na trilha da matemática: do raciocínio ao meio-ambiente”. A resolução de situações problemas e assuntos referentes ao meio ambiente fazem com que os alunos tomem os cuidados necessários para com o meio ambiente, aos recursos por ele oferecidos e as consequências das ações errôneas causadas pelo homem.
Resumo:
The most straightforward European single energy market design would entail a European system operator regulated by a single European regulator. This would ensure the predictable development of rules for the entire EU, significantly reducing regulatory uncertainty for electricity sector investments. But such a first-best market design is unlikely to be politically realistic in the European context for three reasons. First, the necessary changes compared to the current situation are substantial and would produce significant redistributive effects. Second, a European solution would deprive member states of the ability to manage their energy systems nationally. And third, a single European solution might fall short of being well-tailored to consumers’ preferences, which differ substantially across the EU. To nevertheless reap significant benefits from an integrated European electricity market, we propose the following blueprint: First, we suggest adding a European system-management layer to complement national operation centres and help them to better exchange information about the status of the system, expected changes and planned modifications. The ultimate aim should be to transfer the day-to-day responsibility for the safe and economic operation of the system to the European control centre. To further increase efficiency, electricity prices should be allowed to differ between all network points between and within countries. This would enable throughput of electricity through national and international lines to be safely increased without any major investments in infrastructure. Second, to ensure the consistency of national network plans and to ensure that they contribute to providing the infrastructure for a functioning single market, the role of the European ten year network development plan (TYNDP) needs to be upgraded by obliging national regulators to only approve projects planned at European level unless they can prove that deviations are beneficial. This boosted role of the TYNDP would need to be underpinned by resolving the issues of conflicting interests and information asymmetry. Therefore, the network planning process should be opened to all affected stakeholders (generators, network owners and operators, consumers, residents and others) and enable the European Agency for the Cooperation of Energy Regulators (ACER) to act as a welfare-maximising referee. An ultimate political decision by the European Parliament on the entire plan will open a negotiation process around selecting alternatives and agreeing compensation. This ensures that all stakeholders have an interest in guaranteeing a certain degree of balance of interest in the earlier stages. In fact, transparent planning, early stakeholder involvement and democratic legitimisation are well suited for minimising as much as possible local opposition to new lines. Third, sharing the cost of network investments in Europe is a critical issue. One reason is that so far even the most sophisticated models have been unable to identify the individual long-term net benefit in an uncertain environment. A workable compromise to finance new network investments would consist of three components: (i) all easily attributable cost should be levied on the responsible party; (ii) all network users that sit at nodes that are expected to receive more imports through a line extension should be obliged to pay a share of the line extension cost through their network charges; (iii) the rest of the cost is socialised to all consumers. Such a cost-distribution scheme will involve some intra-European redistribution from the well-developed countries (infrastructure-wise) to those that are catching up. However, such a scheme would perform this redistribution in a much more efficient way than the Connecting Europe Facility’s ad-hoc disbursements to politically chosen projects, because it would provide the infrastructure that is really needed.