952 resultados para platelet


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this issue of Blood, Wang et al identify an important role for platelet-derived extracellular ERp57, a thiol isomerase enzyme, in platelet integrin regulation and recruitment into a growing thrombus. Comment on: Platelet-derived ERp57 mediates platelet incorporation into a growing thrombus by regulation of the αIIbβ3 integrin. [Blood. 2013]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Epidemiological data suggest inverse associations between citrus flavanone intake and cardiovascular disease (CVD) risk. However, insufficient randomized controlled trial (RCT) data limit our understanding of mechanisms by which flavanones and their metabolites potentially reduce cardiovascular (CV) risk factors. Objective: We examined the effects of orange juice or a dose-matched hesperidin supplement on plasma concentrations of established and novel flavanone metabolites and their effects on CV risk biomarkers in men at moderate CVD risk. Methods: In an acute, randomized, placebo-controlled crossover trial, 16 fasted participants (aged 51-69 y) received orange juice or a hesperidin supplement (both providing 320 mg hesperidin) or control (all matched for sugar and vitamin C content). At baseline and 5 h post-intake, endothelial function (primary outcome), further CV risk biomarkers (i.e. blood pressure, arterial stiffness, cardiac autonomic function, platelet activation and NADPH oxidase gene expression) and plasma flavanone metabolites were assessed. Prior to each intervention, a diet low in flavonoids, nitrate/nitrite, alcohol and caffeine was followed and a standardized low-flavonoid evening meal was consumed. Results: Orange juice intake significantly elevated mean (± SEM) plasma concentrations of 8 flavanone (1.75 ± 0.35 µmol/L, P < 0.0001) and 15 phenolic metabolites (13.27 ± 2.22 µmol/L, P < 0.0001) compared with control at 5 h post-consumption. Despite increased plasma flavanone and phenolic metabolite concentrations, CV risk biomarkers were unaltered. Following hesperidin supplement intake, flavanone metabolites were not different to control, suggesting altered absorption/metabolism compared with the orange juice matrix. Conclusions: Following single-dose flavanone intake within orange juice, we detected circulating flavanone and phenolic metabolites collectively reaching a concentration of 15.20 ± 2.15 µmol/L but observed no effect on CV risk biomarkers. Longer-duration RCTs are required to further examine the previous associations between higher flavanone intakes and improved cardiovascular health and to ascertain the relative importance of food matrix and flavanone-derived phenolic metabolites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Flavonoids reduce cardiovascular disease risk through anti-inflammatory, anti-coagulant and anti-platelet actions. One key flavonoid inhibitory mechanism is blocking kinase activity that drives these processes. Flavonoids attenuate activities of kinases including phosphoinositide-3-kinase (PI3K), Fyn, Lyn, Src, Syk, PKC, PIM1/2, ERK, JNK, and PKA. X-ray crystallographic analyses of kinase-flavonoid complexes show that flavonoid ring systems and their hydroxyl substitutions are important structural features for their binding to kinases. A clearer understanding of structural interactions of flavonoids with kinases is necessary to allow construction of more potent and selective counterparts. We examined flavonoid (quercetin, apigenin and catechin) interactions with Src-family kinases (Lyn, Fyn and Hck) applying the Sybyl docking algorithm and GRID. A homology model (Lyn) was used in our analyses to demonstrate that high quality predicted kinase structures are suitable for flavonoid computational studies. Our docking results revealed potential hydrogen bond contacts between flavonoid hydroxyls and kinase catalytic site residues. Identification of plausible contacts indicated that quercetin formed the most energetically stable interactions, apigenin lacked hydroxyl groups necessary for important contacts, and the non-planar structure of catechin could not support predicted hydrogen bonding patterns. GRID analysis using a hydroxyl functional group supported docking results. Based on these findings, we predicted that quercetin would inhibit activities of Src-family kinases with greater potency than apigenin and catechin. We validated this prediction using in vitro kinase assays. We conclude that our study can be used as a basis to construct virtual flavonoid interaction libraries to guide drug discovery using these compounds as molecular templates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inappropriate platelet aggregation creates a cardiovascular risk that is largely managed with thienopyridines and aspirin. Although effective, these drugs carry risks of increased bleeding and drug 'resistance', underpinning a drive for new antiplatelet agents. To discover such drugs, one strategy is to identify a suitable druggable target and then find small molecules that modulate it. A good and unexploited target is the platelet collagen receptor, GPVI, which promotes thrombus formation. To identify inhibitors of GPVI that are safe and bioavailable, we docked a FDA-approved drug library into the GPVI collagen-binding site in silico. We now report that losartan and cinanserin inhibit GPVI-mediated platelet activation in a selective, competitive and dose-dependent manner. This mechanism of action likely underpins the cardioprotective effects of losartan that could not be ascribed to its antihypertensive effects. We have, therefore, identified small molecule inhibitors of GPVI-mediated platelet activation, and also demonstrated the utility of structure-based repurposing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The glycoprotein VI (GPVI)-Fc receptor γ (FcRγ) chain is the major platelet signaling receptor for collagen. Paradoxically, in a FeCl3 injury model, occlusion, but not initiation of thrombus formation, is delayed in GPVI-deficient and GPVI-depleted mice. In this study, we demonstrate that GPVI is a receptor for fibrin and speculate that this contributes to development of an occlusive thrombus. We observed a marked increase in tyrosine phosphorylation, including the FcRγ chain and Syk, in human and mouse platelets induced by thrombin in the presence of fibrinogen and the αIIbβ3 blocker eptifibatide. This was not seen in platelets stimulated by a protease activated receptor (PAR)-4 peptide, which is unable to generate fibrin from fibrinogen. The pattern of tyrosine phosphorylation was similar to that induced by activation of GPVI. Consistent with this, thrombin did not induce tyrosine phosphorylation of Syk and the FcRγ chain in GPVI-deficient mouse platelets. Mouse platelets underwent full spreading on fibrin but not fibrinogen, which was blocked in the presence of a Src kinase inhibitor or in the absence of GPVI. Spreading on fibrin was associated with phosphatidylserine exposure (procoagulant activity), and this too was blocked in GPVI-deficient platelets. The ectodomain of GPVI was shown to bind to immobilized monomeric and polymerized fibrin. A marked increase in embolization was seen following FeCl3 injury in GPVI-deficient mice, likely contributing to the delay in occlusion in this model. These results demonstrate that GPVI is a receptor for fibrin and provide evidence that this interaction contributes to thrombus growth and stability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have used a novel knockin mouse to investigate the effect of disruption of phosphotyrosine binding of the N-terminal SH2 domain of Syk on platelet activation by GPVI, CLEC-2, and integrin αIIbβ3. The Syk(R41Afl/fl) mouse was crossed to a PF4-Cre(+) mouse to induce expression of the Syk mutant in the megakaryocyte/platelet lineage. Syk(R41Afl/fl;PF4-Cre) mice are born at approximately 50% of the expected frequency and have a similar phenotype to Syk(fl/fl;PF4-Cre) mice, including blood-lymphatic mixing and chyloascites. Anastomosis of the venous and lymphatic vasculatures can be seen in the mesenteric circulation accounting for rapid and continuous mixing of the 2 vasculatures. Platelet activation by CLEC-2 and GPVI is abolished in Syk(R41Afl/fl;PF4-Cre) platelets. Syk phosphorylation on Tyr519/20 is blocked in CLEC-2-stimulated platelets, suggesting a model in which binding of Syk via its N-terminal SH2 domain regulates autophosphorylation. In contrast, outside-in signaling by integrin αIIbβ3 is not altered, but it is inhibited in the presence of inhibitors of Src and Syk tyrosine kinases. These results demonstrate that αIIbβ3 regulates Syk through an ITAM-independent pathway in mice and provide novel insight into the course of events underlying Syk activation and hemITAM phosphorylation by CLEC-2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rationale: Platelets are anuclear cell fragments derived from bone marrow megakaryocytes (MKs) that safeguard vascular integrity but may also cause pathological vessel occlusion. One major pathway of platelet activation is triggered by 2 receptors that signal through an (hem)immunoreceptor tyrosine-based activation motif (ITAM), the activating collagen receptor glycoprotein (GP) VI and the C-type lectin-like receptor 2 (CLEC-2). Growth factor receptor–bound protein 2 (Grb2) is a ubiquitously expressed adapter molecule involved in signaling processes of numerous receptors in different cell types, but its function in platelets and MKs is unknown. Objective: We tested the hypothesis that Grb2 is a crucial adapter protein in (hem)immunoreceptor tyrosine-based activation motif signaling in platelets. Methods and Results: Here, we show that genetic ablation of Grb2 in MKs and platelets did not interfere with MK differentiation or platelet production. However, Grb2-deficiency severely impaired glycoprotein VI–mediated platelet activation because of defective stabilization of the linker of activated T-cell (LAT) signalosome and activation of downstream signaling proteins that resulted in reduced adhesion, aggregation, and coagulant activity on collagen in vitro. Similarly, CLEC-2–mediated signaling was impaired in Grb2-deficient platelets, whereas the cells responded normally to stimulation of G protein–coupled receptors. In vivo, this selective (hem)immunoreceptor tyrosine-based activation motif signaling defect resulted in prolonged bleeding times but affected arterial thrombus formation only after concomitant treatment with acetylsalicylic acid, indicating that defective glycoprotein VI signaling in the absence of Grb2 can be compensated through thromboxane A2–induced G protein–coupled receptor signaling pathways. Conclusions: These results reveal an important contribution of Grb2 in (hem)immunoreceptor tyrosine-based activation motif signaling in platelets in hemostasis and thrombosis by stabilizing the LAT signalosome.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In humans and other mammals, Tityus discrepans (Td) scorpion envenomation produces a variety of systemic effects including respiratory distress, a generalized inflammatory reaction, modulation of blood pressure, fibrin formation, and platelet activation. For many of these effects, the venom components and underlying mechanisms are not known. In the present study, we demonstrate that Td venom (TdV) stimulates integrin αIIbβ3-dependent aggregation of washed human and mouse platelets downstream of Src kinase activation. The pattern of increase in tyrosine phosphorylation induced by TdV in human platelets is similar to that induced by the collagen receptor GPVI, and includes FcR γ-chain, Syk, and PLC γ 2. Confirmation of GPVI activation by TdV was achieved by expression of human GPVI in chicken DT40 B cells and use of a reporter assay. To our surprise, TdV was able to activate mouse platelets deficient in the GPVI-FcR γ-chain complex through a pathway that was also dependent on Src kinases. TdV therefore activates platelets through GPVI and a second, as yet unidentified Src kinase-dependent pathway.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The inhibitory effect of R406 provides direct evidence of a role for Syk in GPVI, CLEC-2 and integrin alphaIIbbeta3 signaling in human platelets. Further, the results demonstrate a critical role for Syk in mediating tyrosine phosphorylation of CLEC-2, suggesting a novel model in which both Src and Syk kinases regulate tyrosine phosphorylation of the C-type lectin receptor leading to platelet activation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Increasing evidence suggests that individual isoforms of protein kinase C (PKC) play distinct roles in regulating platelet activation. Methodology/Principal Findings In this study, we focus on the role of two novel PKC isoforms, PKCδ and PKCε, in both mouse and human platelets. PKCδ is robustly expressed in human platelets and undergoes transient tyrosine phosphorylation upon stimulation by thrombin or the collagen receptor, GPVI, which becomes sustained in the presence of the pan-PKC inhibitor, Ro 31-8220. In mouse platelets, however, PKCδ undergoes sustained tyrosine phosphorylation upon activation. In contrast the related isoform, PKCε, is expressed at high levels in mouse but not human platelets. There is a marked inhibition in aggregation and dense granule secretion to low concentrations of GPVI agonists in mouse platelets lacking PKCε in contrast to a minor inhibition in response to G protein-coupled receptor agonists. This reduction is mediated by inhibition of tyrosine phosphorylation of the FcRγ-chain and downstream proteins, an effect also observed in wild-type mouse platelets in the presence of a PKC inhibitor. Conclusions These results demonstrate a reciprocal relationship in levels of the novel PKC isoforms δ and ε in human and mouse platelets and a selective role for PKCε in signalling through GPVI.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The integrin alpha(IIb)beta(3) plays a critical role in mediating clot retraction by platelets which is important in vivo in consolidating thrombus formation. Actin-myosin interaction is essential for clot retraction. In the present study, we demonstrate that the structurally distinct Src kinase inhibitors, PP2 and PD173952, significantly reduced the rate of clot retraction, but did not prevent it reaching completion. This effect was accompanied by abolition of alpha(IIb)beta(3)-dependent protein tyrosine phosphorylation, including PLCgamma2. A role for PLCgamma2 in mediating clot retraction was demonstrated using PLCgamma2-deficient murine platelets. Furthermore, platelet adhesion to fibrinogen leads to MLC phosphorylation through a pathway that is inhibited by PP2 and by the PLC inhibitor, U73122. These results demonstrate a partial role for Src kinase-dependent activation of PLCgamma2 and MLC phosphorylation in mediating clot retraction downstream of integrin alpha(IIb)beta(3).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The glycoprotein VI (GPVI)-FcR gamma-chain complex initiates powerful activation of platelets by the subendothelial matrix proteins collagen and laminin, which are exposed following vessel damage. Initiation of platelet activation is through an immunoreceptor tyrosine-based activation motif (ITAM). C-type lectin receptor 2 (CLEC-2), following engagement by its endogenous ligand, podoplanin, also mediates powerful platelet activation through Src and Syk kinases, but regulates Syk through a novel dimerization mechanism via a single YxxL motif known as a hemITAM. This chapter compares the signaling pathways of both receptors and their role in hemostasis and thrombosis. Platelets are also increasingly implicated in processes beyond hemostasis and thrombosis. One such process is the efficient separation of the lymphatic and blood vasculatures, which is dependent on CLEC-2-mediated platelet activation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

GPVI activates platelets through an ITAM pathway by activation of Src and Syk kinases leading to activation of PLCy2. CLEC-2 has been shown to activate platelets using an ITAM-like sequence in its cytoplasmic tail that is also dependent on Src and Syk kinases, but shows a partial rather than an absolute dependence on adapter SLP-76 for activation of PLCy2. The aim of this thesis is to understand some of the key differences in these signalling pathways. GPVI is in complex with FcRwhich contains the ITAM sequence (Yxx(L/I)x6−12Yxx(L/I)). These two tyrosines provide a docking site for the tandem-SH2 domains of Syk. In this thesis I show that CLEC-2 signalling through Syk is mediated by phosphorylation of the CLEC-2 YxxL sequence, receptor dimerisation and cross-linking by the Syk SH2 domains. I also show that the differential requirement for SLP-76 is not mediated by Gads. Both signalling pathways also show partial dependency for LAT. I also show that a novel protein, G6f, is not able to substitute for LAT in this signalling pathway and also exclude the LAT-family proteins PAG, LIME, LAX and NTAL as potential LAT replacements in platelet activation by GPVI. These results extend our understanding of platelet activation by CLEC-2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present results demonstrate that platelet adhesion and activation on CLEC-2 ligands or LECs is maintained in the presence of PGI2 and NO.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The C-type lectin-like receptor CLEC-2 signals via phosphorylation of a single cytoplasmic YXXL sequence known as a hem-immunoreceptor tyrosine-based activation motif (hemITAM). In this study, we show that phosphorylation of CLEC-2 by the snake toxin rhodocytin is abolished in the absence of the tyrosine kinase Syk but is not altered in the absence of the major platelet Src family kinases, Fyn, Lyn, and Src, or the tyrosine phosphatase CD148, which regulates the basal activity of Src family kinases. Further, phosphorylation of CLEC-2 by rhodocytin is not altered in the presence of the Src family kinase inhibitor PP2, even though PLCγ2 phosphorylation and platelet activation are abolished. A similar dependence of phosphorylation of CLEC-2 on Syk is also seen in response to stimulation by an IgG mAb to CLEC-2, although interestingly CLEC-2 phosphorylation is also reduced in the absence of Lyn. These results provide the first definitive evidence that Syk mediates phosphorylation of the CLEC-2 hemITAM receptor with Src family kinases playing a critical role further downstream through the regulation of Syk and other effector proteins, providing a new paradigm in signaling by YXXL-containing receptors.