840 resultados para passenger
Resumo:
On August 12, 1986, a public hearing was held in the Henry A. Wallace Building Auditorium, 900 East Grand Avenue, Des Moines, Iowa, for the purpose of receiving comments and statements from individuals, groups, and associations that have an interest in the limits of financial responsibility for intrastate passenger motor carriers.
Resumo:
Abstract not available
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Direct allorecognition is the process by which donor-derived major histocompatibility complex (MHC)-peptide complexes, typically presented by donor-derived ‘passenger’ dendritic cells, are recognised directly by recipient T cells. In this review, we discuss the two principle theories which have been proposed to explain why individuals possess a high-precursor frequency of T cells with direct allospecificity and how self-restricted T cells recognise allogeneic MHCpeptide complexes. These theories, both of which are supported by functional and structural data, suggest that T cells recognising allogeneic MHC-peptide complexes focus either on the allopeptides bound to the allo-MHC molecules or the allo-MHC molecules themselves. We discuss how direct alloimmune responses may be sustained long term, the consequences of this for graft outcome and highlight novel strategies which are currently being investigated as a potential means of reducing rejection mediated through this pathway.
Resumo:
Embedded software systems in vehicles are of rapidly increasing commercial importance for the automotive industry. Current systems employ a static run-time environment; due to the difficulty and cost involved in the development of dynamic systems in a high-integrity embedded control context. A dynamic system, referring to the system configuration, would greatly increase the flexibility of the offered functionality and enable customised software configuration for individual vehicles, adding customer value through plug-and-play capability, and increased quality due to its inherent ability to adjust to changes in hardware and software. We envisage an automotive system containing a variety of components, from a multitude of organizations, not necessarily known at development time. The system dynamically adapts its configuration to suit the run-time system constraints. This paper presents our vision for future automotive control systems that will be regarded in an EU research project, referred to as DySCAS (Dynamically Self-Configuring Automotive Systems). We propose a self-configuring vehicular control system architecture, with capabilities that include automatic discovery and inclusion of new devices, self-optimisation to best-use the processing, storage and communication resources available, self-diagnostics and ultimately self-healing. Such an architecture has benefits extending to reduced development and maintenance costs, improved passenger safety and comfort, and flexible owner customisation. Specifically, this paper addresses the following issues: The state of the art of embedded software systems in vehicles, emphasising the current limitations arising from fixed run-time configurations; and the benefits and challenges of dynamic configuration, giving rise to opportunities for self-healing, self-optimisation, and the automatic inclusion of users’ Consumer Electronic (CE) devices. Our proposal for a dynamically reconfigurable automotive software system platform is outlined and a typical use-case is presented as an example to exemplify the benefits of the envisioned dynamic capabilities.
Resumo:
This dissertation studies technological change in the context of energy and environmental economics. Technology plays a key role in reducing greenhouse gas emissions from the transportation sector. Chapter 1 estimates a structural model of the car industry that allows for endogenous product characteristics to investigate how gasoline taxes, R&D subsidies and competition affect fuel efficiency and vehicle prices in the medium-run, both through car-makers' decisions to adopt technologies and through their investments in knowledge capital. I use technology adoption and automotive patents data for 1986-2006 to estimate this model. I show that 92% of fuel efficiency improvements between 1986 and 2006 were driven by technology adoption, while the role of knowledge capital is largely to reduce the marginal production costs of fuel-efficient cars. A counterfactual predicts that an additional $1/gallon gasoline tax in 2006 would have increased the technology adoption rate, and raised average fuel efficiency by 0.47 miles/gallon, twice the annual fuel efficiency improvement in 2003-2006. An R&D subsidy that would reduce the marginal cost of knowledge capital by 25% in 2006 would have raised investment in knowledge capital. This subsidy would have raised fuel efficiency only by 0.06 miles/gallon in 2006, but would have increased variable profits by $2.3 billion over all firms that year. Passenger vehicle fuel economy standards in the United States will require substantial improvements in new vehicle fuel economy over the next decade. Economic theory suggests that vehicle manufacturers adopt greater fuel-saving technologies for vehicles with larger market size. Chapter 2 documents a strong connection between market size, measured by sales, and technology adoption. Using variation consumer demographics and purchasing pattern to account for the endogeneity of market size, we find that a 10 percent increase in market size raises vehicle fuel efficiency by 0.3 percent, as compared to a mean improvement of 1.4 percent per year over 1997-2013. Historically, fuel price and demographic-driven market size changes have had large effects on technology adoption. Furthermore, fuel taxes would induce firms to adopt fuel-saving technologies on their most efficient cars, thereby polarizing the fuel efficiency distribution of the new vehicle fleet.
Resumo:
The study investigates the inbound and outbound health tourism in the United Kingdom (UK) to determine if the UK can be considered as a net exporter of health services. Although there is an increasing number of studies analysing the phenomenon of health tourism, little empirical data are available. This paper contributes to reducing this gap by providing reliable data on health tourism flows for the British case. Using microdata drawn from the International Passenger Survey (IPS) for the period 2000-2014, we estimate the flows, number of nights and expenditure of tourists looking for medical treatment who complete international visits of less than 12 months’ duration to and from the UK. In addition, we analyse the main destinations of UK residents (outbound health tourists), and country of origin of overseas residents (inbound health tourists). The results show the upward trend of inbound and outbound patients (163 and 364% during the period 2000-2014, respectively), the strong seasonality in outbound patients (lower during the summer), and the significant increase in the levels of expenditure of overseas residents since 2005. Poland, France, India and Hungry are the chosen countries by UK residents to be treated, whereas Irish Republic, Spain, United Arab Emirates and Greece are the main countries providing inbound health patients. Public policy considerations are given.
Resumo:
© IMechE 2014. Controlled auto-ignition, also known as homogeneous charge compression ignition, has been the subject of extensive research because of their ability to provide simultaneous reductions in fuel consumption and NOx emissions from a gasoline engine. However, due to its limited operation range, switching between controlled auto-ignition and spark ignition combustion is needed to cover the complete operating range of a gasoline engine for passenger car applications. Previous research has shown that the spark ignition -controlled auto-ignition hybrid combustion (SCHC) has the potential to control the ignition timing and heat release process during the mode transition operations. However, it was found that the SCHC is often characterized with large cycle-to-cycle variations. The cyclic variations in the in-cylinder pressure are particularly noticeable in terms of both their peak values and timings while the coefficient of variation in the indicated mean effective pressure is much less. In this work, the cyclic variations in SCHC operations were analyzed by means of in-cylinder pressure and heat release analysis in a single-cylinder gasoline engine equipped with Variable Valve Actuation (VVA) systems. First, characteristics of the in-cylinder pressure traces during the spark ignition-controlled auto-ignition hybrid combustion operation are presented and their heat release processes analyzed. In order to clarify the contribution to heat release and cyclic variation in SCHC, a new method is introduced to identify the occurrence of auto-ignition combustion and its subsequent heat release process. Based on the new method developed, the characteristics of cyclic variations in the maximum rate of pressure rise and different stages of heat release process have been analyzed and discussed.
Resumo:
The Train Timetabling Problem (TTP) has been widely studied for freight and passenger rail systems. A lesser effort has been devoted to the study of high-speed rail systems. A modeling issue that has to be addressed is to model departure time choice of passengers on railway services. Passengers who use these systems attempt to travel at predetermined hours due to their daily life necessities (e.g., commuter trips). We incorporate all these features into TTP focusing on high-speed railway systems. We propose a Rail Scheduling and Rolling Stock (RSch-RS) model for timetable planning of high-speed railway systems. This model is composed of two essential elements: i) an infrastructure model for representing the railway network: it includes capacity constraints of the rail network and the Rolling-Stock constraints; and ii) a demand model that defines how the passengers choose the departure time. The resulting model is a mixed-integer programming model which objective function attempts to maximize the profit for the rail operator
Resumo:
OBJECTIVES AND STUDY METHOD: There are two subjects in this thesis: “Lot production size for a parallel machine scheduling problem with auxiliary equipment” and “Bus holding for a simulated traffic network”. Although these two themes seem unrelated, the main idea is the optimization of complex systems. The “Lot production size for a parallel machine scheduling problem with auxiliary equipment” deals with a manufacturing setting where sets of pieces form finished products. The aim is to maximize the profit of the finished products. Each piece may be processed in more than one mold. Molds must be mounted on machines with their corresponding installation setup times. The key point of our methodology is to solve the single period lot-sizing decisions for the finished products together with the piece-mold and the mold-machine assignments, relaxing the constraint that a single mold may not be used in two machines at the same time. For the “Bus holding for a simulated traffic network” we deal with One of the most annoying problems in urban bus operations is bus bunching, which happens when two or more buses arrive at a stop nose to tail. Bus bunching reflects an unreliable service that affects transit operations by increasing passenger-waiting times. This work proposes a linear mathematical programming model that establishes bus holding times at certain stops along a transit corridor to avoid bus bunching. Our approach needs real-time input, so we simulate a transit corridor and apply our mathematical model to the data generated. Thus, the inherent variability of a transit system is considered by the simulation, while the optimization model takes into account the key variables and constraints of the bus operation. CONTRIBUTIONS AND CONCLUSIONS: For the “Lot production size for a parallel machine scheduling problem with auxiliary equipment” the relaxation we propose able to find solutions more efficiently, moreover our experimental results show that most of the solutions verify that molds are non-overlapping even if they are installed on several machines. We propose an exact integer linear programming, a Relax&Fix heuristic, and a multistart greedy algorithm to solve this problem. Experimental results on instances based on real-world data show the efficiency of our approaches. The mathematical model and the algorithm for the lot production size problem, showed in this research, can be used for production planners to help in the scheduling of the manufacturing. For the “Bus holding for a simulated traffic network” most of the literature considers quadratic models that minimize passenger-waiting times, but they are harder to solve and therefore difficult to operate by real-time systems. On the other hand, our methodology reduces passenger-waiting times efficiently given our linear programming model, with the characteristic of applying control intervals just every 5 minutes.
Resumo:
The thesis "COMPARATIVE ANALYSIS OF EFFICIENCY AND OPERATING CHARACTERISTICS OF AUTOMOTIVE POWERTRAIN ARCHITECTURES THROUGH CHASSIS DYNAMOMETER TESTING" was completed through a collaborative partnership between Michigan Technological University and Argonne National Laboratory under a contractual agreement titled "Advanced Vehicle Characterization at Argonne National Laboratory". The goal of this project was to investigate, understand and document the performance and operational strategy of several modern passenger vehicles of various architectures. The vehicles were chosen to represent several popular engine and transmission architectures and were instrumented to allow for data collection to facilitate comparative analysis. In order to ensure repeatability and reliability during testing, each vehicle was tested over a series of identical drive cycles in a controlled environment utilizing a vehicle chassis dynamometer. Where possible, instrumentation was preserved between vehicles to ensure robust data collection. The efficiency and fuel economy performance of the vehicles was studied. In addition, the powertrain utilization strategies, significant energy loss sources, tailpipe emissions, combustion characteristics, and cold start behavior were also explored in detail. It was concluded that each vehicle realizes different strengths and suffers from different limitations in the course of their attempts to maximize efficiency and fuel economy. In addition, it was observed that each vehicle regardless of architecture exhibits significant energy losses and difficulties in cold start operation that can be further improved with advancing technology. It is clear that advanced engine technologies and driveline technologies are complimentary aspects of vehicle design that must be utilized together for best efficiency improvements. Finally, it was concluded that advanced technology vehicles do not come without associated cost; the complexity of the powertrains and lifecycle costs must be considered to understand the full impact of advanced vehicle technology.
Resumo:
Vehicle fuel consumption and emission are two important effectiveness measurements of sustainable transportation development. Pavement plays an essential role in goals of fuel economy improvement and greenhouse gas (GHG) emission reduction. The main objective of this dissertation study is to experimentally investigate the effect of pavement-vehicle interaction (PVI) on vehicle fuel consumption under highway driving conditions. The goal is to provide a better understanding on the role of pavement in the green transportation initiates. Four study phases are carried out. The first phase involves a preliminary field investigation to detect the fuel consumption differences between paired flexible-rigid pavement sections with repeat measurements. The second phase continues the field investigation by a more detailed and comprehensive experimental design and independently investigates the effect of pavement type on vehicle fuel consumption. The third study phase calibrates the HDM-IV fuel consumption model with data collected in the second field phase. The purpose is to understand how pavement deflection affects vehicle fuel consumption from a mechanistic approach. The last phase applies the calibrated HDM-IV model to Florida’s interstate network and estimates the total annual fuel consumption and CO2 emissions on different scenarios. The potential annual fuel savings and emission reductions are derived based on the estimation results. Statistical results from the two field studies both show fuel savings on rigid pavement compared to flexible pavement with the test conditions specified. The savings derived from the first phase are 2.50% for the passenger car at 112km/h, and 4.04% for 18-wheel tractor-trailer at 93km/h. The savings resulted from the second phase are 2.25% and 2.22% for passenger car at 93km/h and 112km/h, and 3.57% and 3.15% for the 6-wheel medium-duty truck at 89km/h and 105km/h. All savings are statistically significant at 95% Confidence Level (C.L.). From the calibrated HDM-IV model, one unit of pavement deflection (1mm) on flexible pavement can cause an excess fuel consumption by 0.234-0.311 L/100km for the passenger car and by 1.123-1.277 L/100km for the truck. The effect is more evident at lower highway speed than at higher highway speed. From the network level estimation, approximately 40 million gallons of fuel (combined gasoline and diesel) and 0.39 million tons of CO2 emission can be saved/reduced annually if all Florida’s interstate flexible pavement are converted to rigid pavement with the same roughness levels. Moreover, each 1-mile of flexible-rigid conversion can result in a reduction of 29 thousand gallons of fuel and 258 tons of CO2 emission yearly.
Resumo:
Axle bearing damage with possible catastrophic failures can cause severe disruptions or even dangerous derailments, potentially causing loss of human life and leading to significant costs for railway infrastructure managers and rolling stock operators. Consequently the axle bearing damage process has safety and economic implications on the exploitation of railways systems. Therefore it has been the object of intense attention by railway authorities as proved by the selection of this topic by the European Commission in calls for research proposals. The MAXBE Project (http://www.maxbeproject.eu/), an EU-funded project, appears in this context and its main goal is to develop and to demonstrate innovative and efficient technologies which can be used for the onboard and wayside condition monitoring of axle bearings. The MAXBE (interoperable monitoring, diagnosis and maintenance strategies for axle bearings) project focuses on detecting axle bearing failure modes at an early stage by combining new and existing monitoring techniques and on characterizing the axle bearing degradation process. The consortium for the MAXBE project comprises 18 partners from 8 member states, representing operators, railway administrations, axle bearing manufactures, key players in the railway community and experts in the field of monitoring, maintenance and rolling stock. The University of Porto is coordinating this research project that kicked-off in November 2012 and it is completed on October 2015. Both on-board and wayside systems are explored in the project since there is a need for defining the requirement for the onboard equipment and the range of working temperatures of the axle bearing for the wayside systems. The developed monitoring systems consider strain gauges, high frequency accelerometers, temperature sensors and acoustic emission. To get a robust technology to support the decision making of the responsible stakeholders synchronized measurements from onboard and wayside monitoring systems are integrated into a platform. Also extensive laboratory tests were performed to correlate the in situ measurements to the status of the axle bearing life. With the MAXBE project concept it will be possible: to contribute to detect at an early stage axle bearing failures; to create conditions for the operational and technical integration of axle bearing monitoring and maintenance in different European railway networks; to contribute to the standardization of the requirements for the axle bearing monitoring, diagnosis and maintenance. Demonstration of the developed condition monitoring systems was performed in Portugal in the Northern Railway Line with freight and passenger traffic with a maximum speed of 220 km/h, in Belgium in a tram line and in the UK. Still within the project, a tool for optimal maintenance scheduling and a smart diagnostic tool were developed. This paper presents a synthesis of the most relevant results attained in the project. The successful of the project and the developed solutions have positive impact on the reliability, availability, maintainability and safety of rolling stock and infrastructure with main focus on the axle bearing health.
Resumo:
Introducción. Los conductores de transporte terrestre de pasajeros están expuestos a factores de riesgo inherentes a su labor, por lo que la intervención sobre estos factores es un aspecto relevante en las empresas de transporte público dado que dicha actividad afecta la calidad de vida de los mismos. Objetivo: Determinar la prevalencia de estrés en el lugar de trabajo y los factores de riesgo biomecánicos asociados en trabajadores de una empresa de transporte terrestre de pasajeros. Materiales y métodos: Estudio de corte transversal con datos secundarios procedentes de una población de 219 empleados, de los cuales 13 eran administrativos y 206 laboraban en la operación de una empresa de transporte terrestre de pasajeros. Las variables incluidas fueron socio demográficas, laborales, variables relacionadas con la medición de estrés y síntomas osteomusculares. El análisis estadístico incluyó medidas de tendencia central y dispersión y para identificar los factores asociados con el estrés se utilizaron pruebas de asociación Chi2 y prueba exacta de Fisher. Resultados: La edad promedio de los participantes fue de 43 años (DS 10 años), siendo en su mayoría trabajadores de sexo masculino (96,3%). Se presentaron síntomas y factores de riesgo biomecánicos en cuello y espalda en un 55.5%. Se encontró asociación significativa entre estrés con los síntomas en pies (p=0,009), con los factores de riesgo biomecánicos, se encontró relación significativa con el tiempo que permanece adoptando las posturas de inclinación hacia delante (p=0,000) y hacia atrás (p=0,001) de espalda/tronco y las posturas en muñecas, (p=0,000), y a la exposición de los conductores a superficies vibrantes (asientos de vehículo) (p=0,021). No se encontró asociación significativa entre estrés y la postura de sedente. Conclusiones: Con este estudio se encontró una prevalencia de estrés de 78% en el lugar de trabajo y de los factores de riesgo biomecánicos asociados a antigüedad, postura y repetitividad de movimientos, con repercusiones en cuello y espalda lumbar, por lo tanto, se requiere de un seguimiento a las condiciones de salud y trabajo para los empleados del sector transporte.
Resumo:
El impacto que ha generado el trauma en Colombia a lo largo de la historia, nos ha obligado a mejorar y adaptar diferentes tipos de sistemas de atención en trauma, basados en los lineamientos internacionales, los cuales buscan evitar el significativo aumento en las tasas de mortalidad y discapacidad que se obtienen de este, especialmente en los servicios de Emergencias en los cuales se reciben el 100% de estos pacientes con traumatismo múltiple o politraumatismo. Dentro de este grupo de pacientes hay un subgrupo que son las pacientes con trauma de abdomen que cursan con estabilidad hemodinámica y además son clasificados de bajo riesgo, ya sea por índices de trauma o por otros métodos como la medición sérica de lactato, los cuales tienen un papel poco despreciable al momento de ver mortalidad y discapacidad por trauma, ya sea penetrante o cerrado; en este trabajo específicamente nos centramos en las personas que consultan al servicio de Emergencias con trauma cerrado de abdomen los cuales son considerados de bajo riesgo, siendo este subgrupo de pacientes uno de los más difíciles de abordar y enfocar al momento de la valoración inicial, ya que se debe tener la seguridad de que no hay lesiones que comprometen la vida y por consiguiente estos pacientes puedan ser dados de alta.