844 resultados para neural representations
Resumo:
The concept of taut submanifold of Euclidean space is due to Carter and West, and can be traced back to the work of Chern and Lashof on immersions with minimal total absolute curvature and the subsequent reformulation of that work by Kuiper in terms of critical point theory. In this paper, we classify the reducible representations of compact simple Lie groups, all of whose orbits are tautly embedded in Euclidean space, with respect to Z(2)-coefficients.
Resumo:
The concept of a partial projective representation of a group is introduced and studied. The interaction with partial actions is explored. It is shown that the factor sets of partial projective representations over a field K are exactly the K-valued twistings of crossed products by partial actions. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The objective of this article is to find out the influence of the parameters of the ARIMA-GARCH models in the prediction of artificial neural networks (ANN) of the feed forward type, trained with the Levenberg-Marquardt algorithm, through Monte Carlo simulations. The paper presents a study of the relationship between ANN performance and ARIMA-GARCH model parameters, i.e. the fact that depending on the stationarity and other parameters of the time series, the ANN structure should be selected differently. Neural networks have been widely used to predict time series and their capacity for dealing with non-linearities is a normally outstanding advantage. However, the values of the parameters of the models of generalized autoregressive conditional heteroscedasticity have an influence on ANN prediction performance. The combination of the values of the GARCH parameters with the ARIMA autoregressive terms also implies in ANN performance variation. Combining the parameters of the ARIMA-GARCH models and changing the ANN`s topologies, we used the Theil inequality coefficient to measure the prediction of the feed forward ANN.
Resumo:
Neural differentiation has been extensively studied in vitro in a model termed neurospheres, which consists of aggregates of neural progenitor cells. Previous studies suggest that they have a great potential for the treatment of neurological disorders. One of the major challenges for scientists is to control cell fate and develop ideal culture conditions for neurosphere expansion in vitro, without altering their features. Similar to human neural progenitors, rat neurospheres cultured in the absence of epidermal and fibroblast growth factors for a short period increased the levels of beta-3 tubulin and decreased the expression of glial fibrillary acidic protein and nestin, compared to neurospheres cultured in the presence of these factors. In this work, we show that rat neurospheres cultured in suspension under mitogen-free condition presented significant higher expression of P2X2 and P2X6 receptor subunits, when compared to cells cultured in the presence of growth factors, suggesting a direct relationship between P2X2/6 receptor expression and induction of neuronal differentiation in mitogen-free cultured rat neurospheres.
Resumo:
This work investigates neural network models for predicting the trypanocidal activity of 28 quinone compounds. Artificial neural networks (ANN), such as multilayer perceptrons (MLP) and Kohonen models, were employed with the aim of modeling the nonlinear relationship between quantum and molecular descriptors and trypanocidal activity. The calculated descriptors and the principal components were used as input to train neural network models to verify the behavior of the nets. The best model for both network models (MLP and Kohonen) was obtained with four descriptors as input. The descriptors were T(5) (torsion angle), QTS1 (sum of absolute values of the atomic charges), VOLS2 (volume of the substituent at region B) and HOMO-1 (energy of the molecular orbital below HOMO). These descriptors provide information on the kind of interaction that occurs between the compounds and the biological receptor. Both neural network models used here can predict the trypanocidal activity of the quinone compounds with good agreement, with low errors in the testing set and a high correctness rate. Thanks to the nonlinear model obtained from the neural network models, we can conclude that electronic and structural properties are important factors in the interaction between quinone compounds that exhibit trypanocidal activity and their biological receptors. The final ANN models should be useful in the design of novel trypanocidal quinones having improved potency.
Resumo:
Cannabinoid compounds have widely been employed because of its medicinal and psychotropic properties. These compounds are isolated from Cannabis sativa (or marijuana) and are used in several medical treatments, such as glaucoma, nausea associated to chemotherapy, pain and many other situations. More recently, its use as appetite stimulant has been indicated in patients with cachexia or AIDS. In this work, the influence of several molecular descriptors on the psychoactivity of 50 cannabinoid compounds is analyzed aiming one obtain a model able to predict the psychoactivity of new cannabinoids. For this purpose, initially, the selection of descriptors was carried out using the Fisher`s weight, the correlation matrix among the calculated variables and principal component analysis. From these analyses, the following descriptors have been considered more relevant: E(LUMO) (energy of the lowest unoccupied molecular orbital), Log P (logarithm of the partition coefficient), VC4 (volume of the substituent at the C4 position) and LP1 (Lovasz-Pelikan index, a molecular branching index). To follow, two neural network models were used to construct a more adequate model for classifying new cannabinoid compounds. The first model employed was multi-layer perceptrons, with algorithm back-propagation, and the second model used was the Kohonen network. The results obtained from both networks were compared and showed that both techniques presented a high percentage of correctness to discriminate psychoactive and psychoinactive compounds. However, the Kohonen network was superior to multi-layer perceptrons.
Resumo:
The motivation for this thesis work is the need for improving reliability of equipment and quality of service to railway passengers as well as a requirement for cost-effective and efficient condition maintenance management for rail transportation. This thesis work develops a fusion of various machine vision analysis methods to achieve high performance in automation of wooden rail track inspection.The condition monitoring in rail transport is done manually by a human operator where people rely on inference systems and assumptions to develop conclusions. The use of conditional monitoring allows maintenance to be scheduled, or other actions to be taken to avoid the consequences of failure, before the failure occurs. Manual or automated condition monitoring of materials in fields of public transportation like railway, aerial navigation, traffic safety, etc, where safety is of prior importance needs non-destructive testing (NDT).In general, wooden railway sleeper inspection is done manually by a human operator, by moving along the rail sleeper and gathering information by visual and sound analysis for examining the presence of cracks. Human inspectors working on lines visually inspect wooden rails to judge the quality of rail sleeper. In this project work the machine vision system is developed based on the manual visual analysis system, which uses digital cameras and image processing software to perform similar manual inspections. As the manual inspection requires much effort and is expected to be error prone sometimes and also appears difficult to discriminate even for a human operator by the frequent changes in inspected material. The machine vision system developed classifies the condition of material by examining individual pixels of images, processing them and attempting to develop conclusions with the assistance of knowledge bases and features.A pattern recognition approach is developed based on the methodological knowledge from manual procedure. The pattern recognition approach for this thesis work was developed and achieved by a non destructive testing method to identify the flaws in manually done condition monitoring of sleepers.In this method, a test vehicle is designed to capture sleeper images similar to visual inspection by human operator and the raw data for pattern recognition approach is provided from the captured images of the wooden sleepers. The data from the NDT method were further processed and appropriate features were extracted.The collection of data by the NDT method is to achieve high accuracy in reliable classification results. A key idea is to use the non supervised classifier based on the features extracted from the method to discriminate the condition of wooden sleepers in to either good or bad. Self organising map is used as classifier for the wooden sleeper classification.In order to achieve greater integration, the data collected by the machine vision system was made to interface with one another by a strategy called fusion. Data fusion was looked in at two different levels namely sensor-level fusion, feature- level fusion. As the goal was to reduce the accuracy of the human error on the rail sleeper classification as good or bad the results obtained by the feature-level fusion compared to that of the results of actual classification were satisfactory.
Resumo:
The English language has become an international language and is globally used as a lingua franca. Therefore, there has been a shift in English-language education toward teaching English as an interna-tional language (EIL). Teaching from the EIL paradigm means that English is seen as an international language used in communication by people from different linguistic and cultural backgrounds. As the approach to English-language education changes from the traditional native-speaker, target country context, so does the role of culture within English-language teaching. The aim of this thesis is to in-vestigate and analyse cultural representations in two Swedish EFL textbooks used in upper-secondary school to see how they correspond with the EIL paradigm. This is done by focusing on the geograph-ical origin of the cultural content as well as looking at what kinds of culture are represented in the textbooks. A content analysis of the textbooks is conducted, using Kachru’s Concentric Circles of English as the model for the analysis of the geographical origin. Horibe’s model of the three different kinds of culture in EIL is the model used for coding the second part of the analysis. The results of the analysis show that culture of target countries and "Culture as social custom" dominate the cultural content of the textbook. Thus, although there are some indications that the EIL paradigm has influ-enced the textbooks, the traditional approach to culture in language teaching still prevails in the ana-lysed textbooks. Because of the relatively small sample included in the thesis, further studies need to be conducted in order to make conclusions regarding the Swedish context as a whole.
Resumo:
Teaching the cultural aspect of foreign language education is a complex and sometimes difficult task, especially since English has become an international language used in different settings and contexts throughout the world. Building on the idea that the spread of the English language and its international status in the world has made English an important school subject to develop students’ cross-cultural and intercultural awareness, this paper has studied what research reveals about the influence this has had on cultural representations in English as a Foreign Language (EFL) textbooks. Findings from a systematic literature review that analyzed four different international studies on the topic are presented. The study showed that EFL textbooks often present stereotypical and overgeneralized representations of culture and that the cultural aspect of EFL education is not adequately addressed since focus tends to lean towards language proficiency. Results also indicated that though steps are made to include cultural representations from different international contexts, the target culture of countries where English is the first language remains dominant in EFL textbooks. The findings are discussed in correlation with the Swedish national curriculum and syllabus.