975 resultados para n(g) nitroarginine methyl ester


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado em Química Medicinal

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study aimed to investigate the effect of structure (design and porosity) on the matrix stiffness and osteogenic activity of stem cells cultured on poly(ester-urethane) (PEU) scaffolds. Different three-dimensional (3D) forms of scaffold were prepared from lysine-based PEU using traditional salt-leaching and advanced bioplotting techniques. The resulting scaffolds were characterized by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), mercury porosimetry and mechanical testing. The scaffolds had various pore sizes with different designs, and all were thermally stable up to 300â °C. In vitrotests, carried out using rat bone marrow stem cells (BMSCs) for bone tissue engineering, demonstrated better viability and higher cell proliferation on bioplotted scaffolds compared to salt-leached ones, most probably due to their larger and interconnected pores and stiffer nature, as shown by higher compressive moduli, which were measured by compression testing. Similarly, SEM, von Kossa staining and EDX analyses indicated higher amounts of calcium deposition on bioplotted scaffolds during cell culture. It was concluded that the design with larger interconnected porosity and stiffness has an effect on the osteogenic activity of the stem cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work describes the synthesis and characterisation of Ni(II) complexes of the following neutral bidentate nitrogen ligands containing pyrazole (pz), pyrimidine (pm) and pyridine (py) aromatic rings: 2-pyrazol-1-yl-pyrimidine (pzpm), 2-(4-methyl-pyrazol-1-yl)-pyrimidine (4-Mepzpm), 2-(4-bromo-pyrazol-1-yl)-pyrimidine (4-Brpzpm), 2-(3,5-dimethyl-pyrazol-1-yl)-pyrimidine (pz*pm), 2-pyrazol-1-yl-pyridine (pzpy) and bis(3,5-dimethylpyrazol-1-yl)phenylmethane (bpz*mph). The complexes [NiBr2(pzpm)] (1), [NiBr2(4-Mepzpm)] (2), [NiBr2(4-Brpzpm)] (3), [NiBr2(pz*pm)] (4), [NiBr2(pzpy)] (5) and [NiBr2(bpz*mph)] (6) were tested as catalysts for ethylene polymerisation, in the presence of the cocatalysts methylaluminoxane (MAO) or diethylaluminium chloride (AlEt2Cl), the catalyst systems 1-3/MAO showing moderate to high activities up to the temperature of 20 °C only in the presence of MAO, whereas 4-6/MAO revealed to be inactive. Other related Pd(II) complexes, already reported in previous works, such as [PdClMe(pzpm)], [PdClMe(pz*pm)], [PdClMe(pzpy)] and [PdClMe(bpz*mph)], also showed to be inactive in the polymerisation of ethylene, when activated by MAO or AlEt2Cl. Selected samples of polyethylene products were characterised by GPC/SEC, 1H and 13C NMR and DSC, showing to be low molecular weight polymers with Mn values ranging from ca. 550 to 1500 g mol−1 and unusually low dispersities of 1.2–1.7, with total branching degrees generally varying between 2 and 12%, melting temperatures from 40 to 120 °C and crystallinities from 40 to 70%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lithium-ion battery cathodes have been fabricated by screen-printing through the development of CLiFePO4 inks. It is shown that shear thinning polymer solutions in N-methyl-2-pyrrolidone (NMP) with Newtonian viscosity above 0.4 Pa s are the best binders for formulating a cathode paste with satisfactory film forming properties. The paste shows an elasticity of the order of 500 Pa and, after shear yielding, shows an apparent viscosity of the order of 3 Pa s for shear rates corresponding to those used during screen-printing. The screen-printed cathode produced with a thickness of 26 mm shows a homogeneous distribution of the active material, conductive additive and polymer binder. The total resistance and diffusion coefficient of the cathode are 450 V and 2.5 10 16cm2 s 1, respectively. The developed cathodes show an initial discharge capacity of 48.2 mAh g 1 at 5C and a discharge value of 39.8 mAh g 1 after 50 cycles. The capacity retention of 83% represents 23% of the theoretical value (charge and/or discharge process in twenty minutes), demonstrating the good performance of the battery. Thus, the developed C-LiFePO4 based inks allow to fabricate screen-printed cathodes suitable for printed lithium-ion batteries

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado em Medicinal Chemistry

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de Doutoramento em Ciência e Engenharia de Polímeros e Compósitos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

v.1