992 resultados para mass determination
Resumo:
The present work had as purpose to evaluate some characteristics of papaya trees (Carica papaya L.), Golden cultivar, obtained trough plant mass selection, regarding plant and fruit quality in the first months of production. The samples were evaluated in a commercial crop at: 0, 20, 40, 70, 130, 180, 230, 260, 280, 310 and 340 days after the planting (DAP) and the first fruits were harvested at 230 DAP. The results showed the low height (199cm in 340 DAP) and low first flowering`s heigth (71cm), which is important to facilitate the harvest process. The plants presented good yield with high number of leafs (allowing a great area of fruit cover) and about 60 fruits per plant. The fruits kept similar features to cv. Golden. The fruit`s fresh weight ranged from 302.4 to 467.5g, which is in the range of the Brazilian market. The pulp thickness was 2.35cm, which is a feature of great economic interest. The pulp thickness showed close relation with climatic factors, and great variations of temperature and precipitation accelerated the pulp loss of thickness.
Resumo:
A stability-indicating high-performance liquid chromatographic (HPLC) and a second-order derivative spectrophotometric (UVDS) analytical methods were validated and compared for determination of simvastatin in tablets. The HPLC method was performed with isocratic elution using a C18 column and a mobile phase composed of methanol:acetonitrile:water (60:20:20, v/v/v) at a flow rate of 1.0 ml/min. The detection was made at 239 nm. In UVDS method, methanol and water were used in first dilution and distilled water was used in consecutive dilutions and as background. The second-order derivative signal measurement was taken at 255 nm. Analytical curves showed correlation coefficients > 0.999 for both methods. The quantitation limits (QL) were 2.41 mu g/ml for HPLC and 0.45 mu g/ml for UVDS, respectively. Intra and inter-day relative standard deviations were < 2.0 %. Statistical analysis with t- and F-tests are not exceeding their critical values demonstrating that there is no significant difference between the two methods at 95 % confidence level.
Resumo:
The aim of this work is to propose a biomonitoring method for the simultaneous determination of Cd and Pb in whole blood by simultaneous electrothermal atomic absorption spectrometry for assessment of environmental levels. A volume of 200 mu L of whole blood was diluted in 500 mu L of 0.2% (w v(-1)) Triton(R) X-100 + 2.0% (v v(-1)) HNO3. Trichloroacetic acid was added for protein precipitation and the supernatant analyzed. A mixture of 250 mu g W + 200 mu g Rh as permanent and 2.0% (w v(-1)) NH4H2PO4 as co-injected modifiers were used. Characteristic masses and limits of detections (n = 20, 3s) for Cd and Pb were 1.26 and 33 pg and 0.026 mu g L-1 and 0.65 mu g L-1, respectively. Repeatability ranged from 1.8 to 6.8% for Cd and 1.2 to 1.7% for Pb. The trueness of method was checked by the analysis of three Reference Materials: Lyphocheck(R) Whole Blood Metals Control level 1 and Seronorm(TM) Trace Elements in Whole Blood levels 1 and 2. The found concentrations presented no statistical differences at the 95% confidence level. Blood samples from 40 volunteers without occupational exposure were analyzed and the concentrations ranged from 0.13 to 0.71 mu g L-1 (0.32 +/- 0.19 mu g L-1) for Cd and 9.3 to 56.7 mu g L-1 (25.1 +/- 10.8 mu g L-1) for Pb. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
High performance liquid chromatographic (HPLC) and UV derivative spectrophotometric (UVDS) methods were developed and validated for the quantitative determination of sotalol hydrochloride in tablets. The HPLC method was performed on a C18 column with fluorescence detection. The excitation and emission wavelengths were 235 and 310nm, respectively. The mobile phase was composed of acetonitrile-water containing 0.1% trietylamine (7:93v/v) and pH adjusted to 4.6 with formic acid. The UVDS method was performed taking a signal at 239.1nm in the first derivative. The correlation coefficients (r) obtained were 0.9998 and 0.9997 for HPLC and UVDS methods, respectively. The proposed methods are simple and adaptable to routine analysis.
Resumo:
The purpose of this study was to develop and validate analytical methods for determination of amlodipine besylate in tablets. Simple, accurate and precise liquid chromatographic and spectrophotometric methods are proposed. For the chromatographic method, the conditions were: a LiChrospher (R) 100 RP-18 Merck (R) (125 mm x 4.6 mm, 5 mu m) column; methanol/water containing 1 % of trietylamine adjusted to pH 5.0 with phosphoric acid (35:65) as mobile phase; a flow rate of 1.0 mL/min and UV detector at 238 nm. Linearity was in the range of 50.0 - 350.0 mu g/mL with a correlation coefficient (r) = 0.9999. For the spectrophotometric method, the first dilutions of samples were performed in methanol and the consecutives in ultrapure water. The quantitation was made at 364.4 nm. Linearity was determined within the range of 41.0 - 61.0 mu g/mL with a correlation coefficient (r) = 0.9996. Our results demonstrate that both methods can be used in routine analysis for quality control of tablets containing amlodipine besylate.
Resumo:
This paper reports a method for the analysis of secondary metabolites stored in glandular trichomes, employing negative ion `chip-based` nanospray tandem mass spectrometry. The analyses of glandular trichomes from Lychnophora ericoides, a plant endemic to the Brazilian `cerrado` and used in traditional medicine as an anti-inflammatory and analgesic agent, led to the identification of five flavonoids (chrysin, pinocembrin, pinostrobin, pinobanksin and 3-O-acetylpinobanksin) by direct infusion of the extracts of glandular trichomes into the nanospray ionisation source. All the flavonoids have no oxidation at ring B, which resulted in a modification of the fragmentation pathways compared with that of the oxidised 3,4-dihydroflavonoids already described in the literature. The absence of the anti-inflammatory and antioxidant di-C-glucosylflavone vicenin-2, or any other flavonoid glycosides, in the glandular trichomes was also demonstrated. The use of the,`chip-based` nanospray QqTOF apparatus is a new fast and useful tool for the identification of secondary metabolites stored in the glandular trichomes, which can be useful for chemotaxonomic studies based on metabolites from glandular trichomes. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
An enantioselective method using liquid-phase microextraction (LPME) followed by HPLC analysis was developed for the determination of oxybutynin (OXY) and its major metabolite N-desethyloxybutynin (DEO) in rat liver microsomal fraction. The LPME procedure was optimized using multifactorial experiments. Under the optimal extraction conditions, the mean recoveries were 61 and 55% for (R)-OXY and (S)-OXY, respectively. and 70 and 76% for (R)-DEO and (S)-DEO, respectively. The validated method was employed to an in vitro biotransformation study using rat liver microsomal fraction. The results demonstrated the enantioselective biotransformation of OXY. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Disproportionation reactions take place in solution of (diacetoxyiodo)benzene (DIB) in acetonitrile in the presence of water, giving iodine(V) and iodine(l) species. This redox reaction is accelerated by the presence of water and by increasing the temperature. Several species of the solution of DIB were identified by high-resolution ESI-MS/MS, which allowed the elucidation of the mechanisms of disproportionation for DIB in gas phase and in solution. Key species in the process are the dimers [PhI(CH)OlPh](+) at m/z 440.8864, [PhI(OAc)OlPh](+) at m/z 482.8947, and [PhI(O)(OAc)OlPh](+) at m/z 498.8887. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A selective method using three-phase liquid-phase microextraction (LPME) in conjunction with LC-MS-MS was devised for the enantioselective determination of chloroquine and its n-dealkylated metabolites in plasma samples. After alkalinization of the samples, the analytes were extracted into n-octanol immobilized in the pores of a polypropylene hollow fiber membrane and back extracted into the acidic acceptor phase (0.1 M TFA) filled into the lumen of the hollow fiber. Following LPME, the analytes were resolved on a Chirobiotic V column using methanol/ACN/glacial aceti acid/diethylamine (90:10:0.5:0.5 by volume) as the mobile phase. The MS detection was carried out using multiple reaction monitoring with ESI in the positive ion mode. The optimized LPME method yielded extraction recoveries ranging from 28 to 66%. The method was linear over 5 - 500 ng/mL and precision (RSD) and accuracy (relative error) values were below 15% for all analytes. The developed method was applied to the determination of the analytes in rat plasma samples after oral administration of the racemic drug.
Resumo:
A complete analysis of H-1 and C-13 NMR spectra of the trypanocidal sesquiterpene lactone eremantholide C and two of its analogues is described. These structurally similar sesquiterpene lactones were submitted to H-1 NMR, C-13 (H-1) NMR, gCOSY, gHSQC, gHMBC, J-resolved and DPFGSE-NOE NMR techniques. The detailed analysis of those results, correlated to some computational calculations (molecular mechanics), led to the total and unequivocal assignment of all H-1 and C-13 NMR data. The determination of all H-1/H-1 coupling constants and all signal multiplicities, together with the elimination of previous ambiguities were also achieved. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
A high-performance liquid chromatographic method with triple-quadrupole mass spectrometry detection (LC-MS-MS) was developed and validated for the first time for the simultaneous quantification of zopiclone and its metabolites in rat plasma samples. The analytes were isolated from rat plasma by liquid-liquid extraction and separated using a chiral stationary phase based on an amylose derivative, Chiralpak ADR-H column, and ethanol-methanol-acetonitrile (50:45:5, v/v/v) plus 0.025% diethylamine as the mobile phase, at a flow-rate of 1.0 mL min(-1). Moclobemide was used as the internal standard. The developed method was linear over the concentration range of 7.5-500 ng mL(-1). The mean absolute recoveries were 74.6 and 75.7; 61.6 and 56.9; 72.5, and 70.7 for zopiclone enantiomers, for N-desmethyl zopiclone enantiomers and for zopiclone-N-oxide enantiomers, respectively, and 75.9 for the internal standard. Precision and accuracy were within acceptable levels of confidence (<15%). The method application in a pilot study of zopiclone kinetic disposition in rats showed that the levels of (+)-(S)-zopiclone were always higher than those of (-)-R-zopiclone. Higher concentrations were also observed for (+)-(S)-N-desmethyl zopiclone and (+)-(S)-N-oxide zopiclone, confirming the stereoselective disposition of zopiclone.
Resumo:
Fatty acid synthase (FASN) is the metabolic enzyme responsible for the endogenous synthesis of the saturated long-chain fatty acid palmitate. In contrast to most normal cells, FASN is overexpressed in a variety of human cancers including cutaneous melanoma, in which its levels of expression are associated with a poor prognosis and depth of invasion. Recently, we have demonstrated the mitochondrial involvement in FASN inhibition-induced apoptosis in melanoma cells. Herein we compare, via electrospray ionization mass spectrometry (ESI-MS), free fatty acids (FFA) composition of mitochondria isolated from control (EtOH-treated cells) and Orlistat-treated B16-F10 mouse melanoma cells. Principal component analysis (PCA) was applied to the ESI-MS data and found to separate the two groups of samples. Mitochondria from control cells showed predominance of six ions, that is, those of m/z 157 (Pelargonic, 9:0), 255 (Palmitic, 16:0), 281 (Oleic, 18:1), 311 (Arachidic, 20:0), 327 (Docosahexaenoic, 22:6) and 339 (Behenic, 22:0). In contrast, FASN inhibition with Orlistat changes significantly mitochondrial FFA composition by reducing synthesis of palmitic acid, and its elongation and unsaturation products, such as arachidic and behenic acids, and oleic acid, respectively. ESI-MS of mitochondria isolated from Orlistat-treated cells presented therefore three major ions of m/z 157 (Pelargonic, 9:0), 193 (unknown) and 199 (Lauric, 12:0). These findings demonstrate therefore that FASN inhibition by Orlistat induces significant changes in the FFA composition of mitochondria. Copyright (C) 2011 John Wiley & Sons, Ltd.
Resumo:
The purpose of this study was the development and validation of an LC-MS-MS method for simultaneous analysis of ibuprofen (IBP), 2-hydroxyibuprofen (2-OH-IBP) enantiomers, and carboxyibuprofen (COOH-IBP) stereoisomers in fungi culture medium, to investigate the ability of some endophytic fungi to biotransform the chiral drug IBP into its metabolites. Resolution of IBP and the stereoisomers of its main metabolites was achieved by use of a Chiralpak AS-H column (150 x 4.6 mm, 5 mu m particle size), column temperature 8 degrees C, and the mobile phase hexane-isopropanol-trifluoroacetic acid (95: 5: 0.1, v/v) at a flow rate of 1.2 mL min(-1). Post-column infusion with 10 mmol L(-1) ammonium acetate in methanol at a flow rate of 0.3 mL min(-1) was performed to enhance MS detection (positive electrospray ionization). Liquid-liquid extraction was used for sample preparation with hexane-ethyl acetate (1:1, v/v) as extraction solvent. Linearity was obtained in the range 0.1-20 mu g mL(-1) for IBP, 0.05-7.5 mu g mL(-1) for each 2-OH-IBP enantiomer, and 0.025-5.0 mu g mL(-1) for each COOH-IBP stereoisomer (r >= 0.99). The coefficients of variation and relative errors obtained in precision and accuracy studies (within-day and between-day) were below 15%. The stability studies showed that the samples were stable (p > 0.05) during freeze and thaw cycles, short-term exposure to room temperature, storage at -20 degrees C, and biotransformation conditions. Among the six fungi studied, only the strains Nigrospora sphaerica (SS67) and Chaetomium globosum (VR10) biotransformed IBP enantioselectively, with greater formation of the metabolite (+)-(S)-2-OH-IBP. Formation of the COOH-IBP stereoisomers, which involves hydroxylation at C3 and further oxidation to form the carboxyl group, was not observed.
Resumo:
This paper reports theoretical and experimental studies of gas-phase fragmentation reactions of four naturally occurring isoflavones. The samples were analyzed in negative ion mode by direct infusion in ESI-QqQ, ESI-QqTOF and ESI-Orbitrap systems. The MS/MS and MS(n) spectra are in agreement with the fragmentation proposals and high-resolution analyses have confirmed the formulae for each ion observed. As expected, compounds with methoxyl aromatic substitution have showed a radical elimination of center dot CH(3) as the main fragmentation pathway. A second radical loss (center dot H) occurs as previously observed for compounds which exhibit a previous homolytic center dot CH(3) cleavage (radical anion) and involves radical resonance to stabilize the anion formed. However, in this study we suggest another mechanism for the formation of the main ions, on the basis of the enthalpies for each species. Compounds without methoxy substituent dissociate at the highest energies and exhibit the deprotonated molecule as the most intense ion. Finally, energy-resolved experiments were carried out to give more details about the gas-phase dissociation reaction of the isoflavones and the results are in agreement with the theoretical approaches. Copyright (C) 2011 John Wiley & Sons, Ltd.
Resumo:
A CE method was developed and validated for the stereoselective determination of midodrine and desglymidodrine in Czapek culture medium to be applied to a stereoselective biotransformation study employing endophytic fungi. The electrophoretic analyses were performed using an uncoated fused-silica capillary and 70 mmol/L sodium acetate buffer solution (pH 5.0) containing 30 mmol/L heptakis (2, 3, 6-tri-O-methyl)-beta-CD as running electrolyte. The applied voltage and temperature used were 15 kV and 15 C, respectively. The UV detector was set at 200 nm. The sample preparation was carried out by liquid-liquid extraction using ethyl acetate as extractor solvent. The method was linear over the concentration range of 0.1-12 mu g/mL for each enantiomer of midodrine and desglymidodrine (r >= 0.9975). Within-day and between-day precision and accuracy evaluated by RSDs and relative errors, respectively, were lower than 15% for all analytes. The method proved to be robust by a fractional factorial design evaluation. The validated method was used to assess the midodrine biotransformation to desglymidodrine by the fungus Phomopsis sp. (TD2), which biotransformed 1.1% of (-)-midodrine to (-)-desglymidodrine and 6.1% of (+)-midodrine to (+)-desglymidodrine.