998 resultados para hyper-Dk material


Relevância:

20.00% 20.00%

Publicador:

Resumo:

175 nm-thick Ba0.5Sr0.5TiO3 (BST) thin film fabricated by pulsed laser deposition (PLD) technique is found to be a mixture of two distributions of material. We discuss whether these two components are nano-regions of paraelectric and ferroelectric phases, or a bimodal grain-size distribution, or an effect of oxygen vacancy gradient from the electrode interface. The fraction of switchable ferroelectric phase decreases under bipolar pulsed fields, but it recovers after removal of the external fields. The plot of capacitance in decreasing dc voltage (C(Vdown arrow) versus that in increasing dc 61 voltage C(Vup arrow) is a superposition of overlapping of two triangles, in contrast to one well-defined triangle for typical ferroelectric SrBi2Ta2O9 thin films.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article reports on the results of ongoing work in which the foaming characteristics of metallocene-catalyzed linear low density polyethylenes for rotational molding are investigated. Earlier publications related rheological and thermal parameters to the polymer structure and mechanical properties and found that metallocene polyethylene can be used in rotational foam molding to produce a foam that will perform as well as a Ziegler-Natta catalyzed foam. Through adjustments to molding conditions, the significant processing and physical material parameters, which optimize metallocene catalyzed linear low-density polyethylene foam structure, have been identified. This article details the optimum processing route for the production of two layer skin/foam parts using the drop box method. © SAGE Publications 2007.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A methodology to estimate the cost implications of design decisions by integrating cost as a design parameter at an early design stage is presented. The model is developed on a hierarchical basis, the manufacturing cost of aircraft fuselage panels being analysed in this paper. The manufacturing cost modelling is original and relies on a genetic-causal method where the drivers of each element of cost are identified relative to the process capability. The cost model is then extended to life cycle costing by computing the Direct Operating Cost as a function of acquisition cost and fuel burn, and coupled with a semi-empirical numerical analysis using Engineering Sciences Data Unit reference data to model the structural integrity of the fuselage shell with regard to material failure and various modes of buckling. The main finding of the paper is that the traditional minimum weight condition is a dated and sub-optimal approach to airframe structural design.