935 resultados para high temperature reactor
Resumo:
Quatrocentas aves com peso médio de 675,00 g foram distribuídas em delineamento de blocos casualizados, com base no peso das aves, com cinco tratamentos e quatro repetições. As dietas experimentais foram constituídas de cinco níveis de energia metabolizável (2.800, 2.900, 3.000, 3.100 e 3.200 kcal de EM/kg de ração) formuladas para atender às exigências nutricionais, exceto de energia metabolizável. O aumento do nível de energia das rações foi obtido pela adição de óleo de soja. Realizaram-se análises de variância e de regressão, associando-se os níveis de energia aos valores das variáveis estudadas. As aves foram avaliadas quanto ao desempenho (consumo de ração, ganho de peso e conversão alimentar) e às características de carcaça nos períodos de 22 a 35 dias, 36 a 42 dias, 43 aos 49 dias e de 22 a 49 dias de idade. O ganho de peso e a conversão alimentar de frangos de corte da linhagem Hubbard mantidos em ambiente de alta temperatura não são influenciados pelos níveis de energia metabolizável da ração. Os níveis de energia da dieta não afetam os rendimentos de carcaça, coxa, sobrecoxa, asa, tulipa, moela coração fígado, proventrículo e intestino. Entretanto, a gordura abdominal aumenta e o rendimento de peito decresce proporcionalmente à elevação da energia da dieta em ambiente de altas temperaturas.
Resumo:
Glycogen synthases catalyze the transfer of a glucosyl moiety from a nucleotide phosphosugar to a nascent glycogen chain via an alpha1-->4 linkage. Although many genes coding for glycogen synthases have been described, the enzymes from rabbit and yeast are the best characterized. The fungus Neurospora crassa accumulates glycogen during exponential growth, and mobilizes it at the onset of stationary phase, or when placed at high temperature or starved for carbon. Through a PCR methodology, the gsn cDNA coding for the N. crassa glycogen synthase was isolated, and the amino acid sequence of the protein was deduced. The product of the cDNA seems to be the only glycogen synthase present in N. crassa. Characterization of the gsn cDNA revealed that it codes for a 706-amino acids protein, which is very similar to mammalian and yeast glycogen synthases. Gene expression increased during exponential growth, reaching its maximal level at the end of the exponential growth phase, which is consistent with the pattern of glycogen synthase activity and glycogen level. Expression of the gsn is highly regulated at the transcriptional level. Under culture conditions that induce heat shock, conidiation, and carbon starvation, expression of the gsn gene was decreased, and glycogen synthase activity and glycogen content behaved similarly.
Resumo:
Sowing is a critical time in the cycle of a crop and the seeds are frequently exposed to adverse conditions that may compromise the establishment of seedlings in the field. on this basis, the objective of the present study was to determine the effect of types of environmental stress on the emergence of sunflower, maize and soybean seeds with different levels of vigor. High vigor seeds were artificially aged in order to obtain medium and low vigor seeds and then they were sown in clay soil in plastic boxes and submitted to the following types of environmental stress during the germination process : 1) high temperature (35degreesC), 2) low temperature (15 or 18degreesC), 3) water excess (Psi > -0.0001 MPa), 4) water deficiency (Psi approximately equal to -1.1; -1.2 and -0.6 MPa for sunflower, maize and soybean, respectively), 5) sowing at a depth of 7 cm and 6) pathogenic infection of sunflower seeds with Alternaria helianthi, of maize seeds with Fusarium moniliforme and of soybean seeds with Colletotrichum dematium, var. truncata. The results were compared to those obtained with controls sown under optimal condition. It was concluded that: 1) the effect of seed vigor on emergence depends on the type of enviromental stress to which the seeds are exposed, 2) the stress to which the the seeds demonstrated highest sensitivity varied with species and 3) high temperature stress was the one that most impaired the emergence of the three species.
Resumo:
The shrinking behavior, apparent densities and rehydration indexes of fresh and osmotically pre-treated pineapple slices during air-drying were obtained. The air drying velocity varied from 1.5 to 2.5 m/s and the air temperature from 40 to 70 degreesC. By means of automatic control, it was possible to obtain drying curves under conditions of constant product temperature. Volumetric shrinkage of fresh samples was temperature independent for drying at high air velocities but, at lower velocities, increased with decreasing drying temperature. Osmotically pre-treating the material resulted in reduced shrinkage, as well as drying with product temperature controlled, due to lower drying times needed that led to shorter high temperature exposition. Moisture dependence of apparent density was highly non-linear and could be fitted by an empirical model. Fresh sample rehydration indexes were higher than osmosed ones and increased with increasing temperature, except for pre-treated samples dried at 70 degreesC, probably due to superficial sugar caramelization, which reduced surface water permeability.
Resumo:
We have performed dielectric and micro-Raman spectroscopy measurements in the 298 - 673 K temperature range in polycrystalline Pb0.50Sr0.50TiO3 thin films prepared by a soft chemical method. The phase transition have been investigated by dielectric measurements at various frequencies during the heating cycle. It was found that the temperature corresponding to the peak value of the dielectric constant is frequency-independent, indicating a non-relaxor ferroelectric behavior. However, the dielectric constant versus temperature curves associated with the ferroelectric to paraelectric phase transition showed a broad maximum peak at around 433 K. The observed behavior is explained in terms of a diffuse phase transition. The obtained Raman spectra indicate the presence of a local symmetry disorder, due to a higher strontium concentration in the host lattice. The monitoring of some modes, conducted in the Pb0.50Sr0.50TiO3 thin films, showed that the ferroelectric tetragonal phase undergoes a transition to the paraelectric cubic phase at around 423 K. However, the Raman activity did not disappear, as would be expected from a transition to the cubic paraelectric phase. The strong Raman spectrum observed for this cubic phase is indicative that a diffuse-type phase transition is taking place. This behavior is attributed to distortions of the perovskite structure, allowing the persistence of low-symmetry phase features in cubic phase high above the transition temperature. This result is in contrast to the forbidden first-order Raman spectrum, which would be expected from a cubic paraelectric phase, such as the one observed at high temperature in pure PbTiO3 perovskite.
Resumo:
Glass transition temperatures of freeze-dried tomato conditioned at various water activities at 25 C were determined by differential scanning calorimetry (DSC). Air-dried tomato with and without osmotic pre-treatment in sucrose/NaCl solutions was also analyzed. Thermograms corresponding to the low water activity domain (0.11 less than or equal to a(w) less than or equal to 0.75) revealed the existence of two glass transitions, which were attributed to separated phases formed by sugars and water and other natural macromolecules present in the vegetable. Both transitions were plasticized by water and experimental data could be well correlated by the Gordon-Taylor equation in the low-temperature domain, and by the Kwei model in the high-temperature domain. For higher water activities, the low-temperature glass transition curve exhibited a discontinuity, with suddenly increased glass transition temperatures approaching a constant value that corresponds to the T-g of the maximally freeze-concentrated amorphous matrix. The unfreezable water content was determined through the melting enthalpy dependence on the moisture content. (C) 2002 Elsevier B.V. Ltd. All rights reserved.
Resumo:
The efficiency of different methods for the decontamination of glassware used for the analysis of dissolved organic carbon (DOC) was tested using reported procedures as well as new ones proposed in this work. A Fenton solution bath (1.0 mmol L-1 Fe2+ and 100 mmol L-1 H2O2) for 1 h or for 30 min employing UV irradiation showed to combine simplicity, low cost and high efficiency. Using the optimized cleaning procedure, the DOC for stored UV-irradiated ultrapure water reached concentrations below the limit of detection (0.19 mu mol C L-1). Filtered (0.7 mu m) rain samples maintained the DOC integrity for at least 7 days when stored at 4 degrees C. The volatile organic carbon (VOC) fraction in the rain samples collected at two sites in São Paulo state (Brazil) ranged from 0% to 56% of their total DOC content. Although these high-VOC concentrations may be derived from the large use of ethanol fuel in Brazil, our results showed that when using the high-temperature catalytic oxidation technique, it is essential to measure DOC rather than non-purgeble organic carbon to estimate organic carbon, since rainwater composition can be quite variable, both geographically and temporally. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Charqui meats were prepared in laboratory conditions in order to carry out experiments to observe the possibility of development of enterotoxigenic Staphylococcus aureus and Clostridium bottilinum proteolytic type B spores and their toxins. Results demonstrated that the harsh processing conditions, high salt concentration, relative high temperature, a, values, inhibited the growth of both bacteria. Under our experimental conditions, S. aureus would survive throughout the sequence of salting steps i.e. brine followed by rock salting and the sunshine drying step. However, at final a(w) value of 0.70-0.75 would create conditions to inhibit its development. The other experiment revealed that C. botulinum spores germination also was impaired because of these low a(w) values. Under these conditions, charqui meats revealed to be safe products in relation to toxins from both enterotoxigenic S. aureus and C. botulinum. (C) 2003 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Superconductor films of the BSCCO system have been grown by dip coating technique with good success. The chemical method allows us to grow high temperature superconductor thin films to get better control of stoichiometry, large areas and is cheaper than other methods. There is a great technological interest in growth oriented superconductor films due anisotropic characteristics of superconductor materials of high critical temperature, specifically the cuprates, as we know that the orientation may increase the electrical transport properties. Based on this, the polymeric precursor method has been used to obtain thin films of the BSCCO system. In this work we have applied that method together with the deposition technique known as dip coating to obtain Bi-based superconductor thin films, specifically, Bi1.6Pb0.4Sr2.0C2.0Cu3.0Ox+8, also known as 2223 phase with a critical temperature around 110 K. The films with multilayers have been grown on crystalline substrates of LaAlO3 and orientated (100) after being heat treated around 790 degrees C - 820 degrees C in lapse time of 1 hour in a controlled atmosphere. XRD measurements have shown the presence of a crystalline phase 2212 with a critical temperature around 85 K with (001) orientation, as well as a small fraction of 2223 phase. SEM has shown a low uniformity and some cracks that maybe related to the applied heat treatment. WDS has also been used to study the films composition. Different heat treatments have been used with the aim to increase the percentage of 2223 phase. Measurements of resistivity confirmed the presence of at least two crystalline phases, 2212 and 2223, with T-c around 85 K and 110 K, respectively.
Resumo:
Since high-temperature superconductors were discovered, several studies have been made on their physical properties, attempting to associate them to the origin of superconductivity. Obviously, the oxygen atoms interstitially dissolved in the matrix have an important role in superconductivity, since they move easily in the lattice. In addition, they contribute to hole creation in the CuO2 planes. Anelastic spectroscopy ( internal friction) measurements are sensitive tools for the study of defects in solids, in particular for oxygen mobility. In this paper, Bi2Sr2CaCu2O8+y samples with several different amounts of interstitial oxygen were analysed by means of anelastic spectroscopy measurements. The measurements were performed by using a torsion pendulum operating at a frequency of about 40 Hz. Complex relaxation structures were observed and attributed to the shift of the oxygen interstitial atoms in BiO chains.
Resumo:
The Eastern Blue Ridge Province of the southern Appalachians contains, in part, remnants of an Ordovician accretionary wedge complex formed during subduction of an oceanic tract before mid-Ordovician accretion with Laurentia. The Eastern Blue Ridge Province consists of metapelite and amphibolite intruded by low-K plutons, high-temperature (T > 750 degrees C) Ordovician eclogite, and other high-pressure metamafic and meta-ultramatic rocks. Felsic plutons in the Eastern Blue Ridge Province are important time markers for regional-scale tectonics, deformation, and metamorphism. Plutons were thought to be related to either Taconian (Ordovician) or Acadian (Devonian-Silurian) tectonothermal events.We dated five plutonic or metaplutonic rocks to constrain pluton crystallization ages better and thus the timing of tectonism. The Persimmon Creek gneiss yielded a protolith crystallization age of 455.7 +/- 2.1 Ma, Chalk Mountain 377.7 +/- 2.5 Ma, Mt. Airy 334 +/- 3 Ma, Stone Mountain 335.6 +/- 1.0 Ma, and Rabun 335.1 +/- 2.8 Ma. The latter four plutons were thought to be part of the Acadian Spruce Pine Suite, but instead our new ages indicate that Alleghanian (Carboniferous-Permian) plutonism is widespread and voluminous in the Eastern Blue Ridge Province. The Chattahoochee fault, which was considered an Acadian structure, cuts the Rabun pluton and thus must have been active during the Alleghanian orogeny. The new ages indicate that Persimmon Creek crystallized less than 3 m.y. after zircon crystallization in Eastern Blue Ridge eclogite and is nearly synchronous with nearby high-grade metamorphism and migmatization. The three phases of plutonism in the Eastern Blue Ridge Province correspond with established metamorphic ages for each of the three major orogenic pulses along the western flank of the southern Appalachians.
Resumo:
In situ solid state oxidation reaction for an alternative La1-xSrxMnO3 (x = 0, 0.1, 0.2 and 0.3) formation is reported. Samples have been obtained by using strontium peroxide, lanthanum and manganese (III) oxide reagents. Strontium peroxide has induced the oxidation of Mn+3 to Mn+4. Lanthanum strontium-doped manganite was obtained without secondary phase formation. La0.825Sr0.175MnO3 showed two structural transitions. The first from 88 to 373 K and the second at 1073 K. which are explained by Jahn-Teller effect at low temperature and cation displacement at high temperature. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
The industrial production of ethanol is affected mainly by contamination by lactic acid bacteria besides others factors that act synergistically like increased sulfite content, extremely low pH, high acidity, high alcoholic content, high temperature and osmotic pressure. In this research two strains of Saccharomyces cerevisiae PE-2 and M-26 were tested regarding the alcoholic fermentation potential in highly stressed conditions. These strains were subjected to values up to 200 mg NaHSO3 l(-1), 6 g lactic acid l(-1), 9.5% (w/v) ethanol and pH 3.6 during fermentative processes. The low pH (3.6) was the major stressing factor on yeasts during the fermentation. The M-26 strain produced higher acidity than the other, with higher production of succinic acid, an important inhibitor of lactic bacteria. Both strains of yeasts showed similar performance during the fermentation, with no significant difference in cell viability.
Resumo:
This paper describes the development of a semiconductor strain gage tactile transducer. It was designed with the goal of measuring finger forces without affecting the hand dexterity. The transducer structure was manufactured with stainless steel and has small dimensions ( 4 min diameter and I min thickness). It is light and suitable to connect to the finger pads. It has a device that prevents its damage when forces are applied. The semiconductor strain gage was used over due its small size and high sensitivity, although it has high temperature sensitivity. Theory, design and construction details are presented the signal conditioning circuit is very simple because the semiconductor strain gage sensitivity is high. It presents linear response from 0 to 100 N, 0.5 N resolution, fall time of 7.2 ms, good repeatability, and small hysteresis. The semiconductor strain gage transducer has characteristics that can make it very useful in Rehabilitation Engineering, Robotics, and Medicine.
Resumo:
The temperature dependence of the electrical conductivity and the F-19 nuclear magnetic resonance (NMR) of PbGeO3-PbF2CdF, glasses and glass ceramics are investigated. The measured conductivity values of the glasses are above 10(-5) Skin at 500 K, and increase with increasing lead fluoride content. Activation energies extracted from the conductivity data are in the range 0.59-0.73 eV. Results are consistent with the hypothesis that in these oxyfluoride glasses lead fluoride rich clusters are dispersed in a metagermanate based matrix providing increasing mobility pathways for conducting ions. The conductivity of a sample of the glass ceramic of composition (mol%) 60PbGeO(3-)20PbF(2)-20CdF(2) was found to be smaller than that in the corresponding glass, suggesting that there are poor ionic conducting regions in the interface between the nanometer sized crystals. The temperature dependence of the F-19 relaxation times, measured in the range 100-800 K, exhibit the qualitative features associated with high fluorine mobility in both, glass and glass ceramics materials. We suggest that de-convolution of the spin-lattice relaxation rates observed in the glass ceramics shows that the observed high temperature rate maximum is associated with the diffusional motions of the fluorine ions in beta-PbF2 crystals. (c) 2005 Elsevier B.V. All rights reserved.