951 resultados para genetic diversity


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aim: We used a combination of modelling and genetic approaches to investigate whether Pinguicula grandiflora and Saxifraga spathularis, two species that exhibit disjunct Lusitanian distributions, may have persisted through the Last Glacial Maximum (LGM, c. 21 ka) in separate northern and southern refugia.

Location: Northern and eastern Spain and south-western Ireland.

Methods: Palaeodistribution modelling using maxent was used to identify putative refugial areas for both species at the LGM, as well as to estimate their distributions during the Last Interglacial (LIG, c. 120 ka). Phylogeographical analysis of samples from across both species' ranges was carried out using one chloroplast and three nuclear loci for each species.

Results: The palaeodistribution models identified very limited suitable habitat for either species during the LIG, followed by expansion during the LGM. A single, large refugium across northern Spain and southern France was postulated for P. grandiflora. Two suitable regions were identified for S. spathularis: one in northern Spain, corresponding to the eastern part of the species' present-day distribution in Iberia, and the other on the continental shelf off the west coast of Brittany, south of the limit of the British–Irish ice sheet. Phylogeographical analyses indicated extremely reduced levels of genetic diversity in Irish populations of P. grandiflora relative to those in mainland Europe, but comparable levels of diversity between Irish and mainland European populations of S. spathularis, including the occurrence of private hapotypes in both regions.

Main conclusions: Modelling and phylogeographical analyses indicate that P. grandiflora persisted through the LGM in a southern refugium, and achieved its current Irish distribution via northward dispersal after the retreat of the ice sheets. Although the results for S. spathularis are more equivocal, a similar recolonization scenario also seems the most likely explanation for the species' current distribution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Global climate changes during the Quaternary reveal much about broader evolutionary effects of environmental change. Detailed regional studies reveal how evolutionary lineages and novel communities and ecosystems, emerge through glacial bottlenecks or from refugia. There have been significant advances in benthic imaging and dating, particularly with respect to the movements of the British (Scottish) and Irish ice sheets and associated changes in sea level during and after the Last Glacial Maximum (LGM). Ireland has been isolated as an island for approximately twice as long as Britain with no evidence of any substantial, enduring land bridge between these islands after ca 15 kya. Recent biogeographical studies show that Britain's mammal community is akin to those of southern parts of Scandinavia, The Netherlands and Belgium, but the much lower mammal species richness of Ireland is unique and needs explanation. Here, we consider physiographic, archaeological, phylogeographical i.e. molecular genetic, and biological evidence comprising ecological, behavioural and morphological data, to review how mammal species recolonized western Europe after the LGM with emphasis on Britain and, in particular, Ireland. We focus on why these close neighbours had such different mammal fauna in the early Holocene, the stability of ecosystems after LGM subject to climate change and later species introductions.

There is general concordance of archaeological and molecular genetic evidence where data allow some insight into history after the LGM. Phylogeography reveals the process of recolonization, e.g. with respect to source of colonizers and anthropogenic influence, whilst archaeological data reveal timing more precisely through carbon dating and stratigraphy. More representative samples and improved calibration of the ‘molecular clock’ will lead to further insights with regards to the influence of successive glaciations. Species showing greatest morphological, behavioural and ecological divergence in Ireland in comparison to Britain and continental Europe, were also those which arrived in Ireland very early in the Holocene either with or without the assistance of people. Cold tolerant mammal species recolonized quickly after LGM but disappeared, potentially as a result of a short period of rapid warming. Other early arrivals were less cold tolerant and succumbed to the colder conditions during the Younger Dryas or shortly after the start of the Holocene (11.5 kya), or the area of suitable habitat was insufficient to sustain a viable population especially in larger species. Late Pleistocene mammals in Ireland were restricted to those able to colonize up to ca 15 kya, probably originating from adjacent areas of unglaciated Britain and land now below sea level, to the south and west (of Ireland). These few, early colonizers retain genetic diversity which dates from before the LGM. Late Pleistocene Ireland, therefore, had a much depleted complement of mammal species in comparison to Britain.

Mammal species, colonising predominantly from southeast and east Europe occupied west Europe only as far as Britain between ca 15 and 8 kya, were excluded from Ireland by the Irish and Celtic Seas. Smaller species in particular failed to colonise Ireland. Britain being isolated as an island from ca. 8 kya has similar species richness and composition to adjacent lowland areas of northwest continental Europe and its mammals almost all show strongest genetic affinity to populations in neighbouring continental Europe with a few retaining genotypes associated with earlier, western lineages.

The role of people in the deliberate introduction of mammal species and distinct genotypes is much more significant with regards to Ireland than Britain reflecting the larger species richness of the latter and its more enduring land link with continental Europe. The prime motivation of early people in moving mammals was likely to be resource driven but also potentially cultural; as elsewhere, people exploring uninhabited places introduced species for food and the materials they required to survive. It is possible that the process of introduction of mammals to Ireland commenced during the Mesolithic and accelerated with Neolithic people. Irish populations of these long established, introduced species show some unique genetic variation whilst retaining traces of their origins principally from Britain but in some cases, Scandinavia and Iberia. It is of particular interest that they may retain genetic forms now absent from their source populations. Further species introductions, during the Bronze and late Iron Ages, and Viking and Norman invasions, follow the same pattern but lack the time for genetic divergence from their source populations. Accidental introductions of commensal species show considerable genetic diversity based on numerous translocations along the eastern Atlantic coastline. More recent accidental and deliberate introductions are characterised by a lack of genetic diversity other than that explicable by more than one introduction.

The substantial advances in understanding the postglacial origins and genetic diversity of British and Irish mammals, the role of early people in species translocations, and determination of species that are more recently introduced, should inform policy decisions with regards to species and genetic conservation. Conservation should prioritise early, naturally recolonizing species and those brought in by early people reflecting their long association with these islands. These early arrivals in Britain and Ireland and associated islands show genetic diversity that may be of value in mitigating anthropogenic climate change across Europe. In contrast, more recent introductions are likely to disturb ecosystems greatly, lead to loss of diversity and should be controlled. This challenge is more severe in Ireland where the number and proportion of invasive species from the 19th century to the present has been greater than in Britain.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pseudomonas aeruginosa is an opportunistic pathogen and an important cause of infection, particularly amongst cystic fibrosis (CF) patients. While specific strains capable of patient-to-patient transmission are known, many infections appear to be caused by unique and unrelated strains. There is a need to understand the relationship between strains capable of colonising the CF lung and the broader set of P. aeruginosa isolates found in natural environments. Here we report the results of a multilocus sequence typing (MLST)-based study designed to understand the genetic diversity and population structure of an extensive regional sample of P. aeruginosa isolates from South East Queensland, Australia. The analysis is based on 501 P. aeruginosa isolates obtained from environmental, animal and human (CF and non-CF) sources with particular emphasis on isolates from the Lower Brisbane River and isolates from CF patients obtained from the same geographical region. Overall, MLST identified 274 different sequence types, of which 53 were shared between one or more ecological settings. Our analysis revealed a limited association between genotype and environment and evidence of frequent recombination. We also found that genetic diversity of P. aeruginosa in Queensland, Australia was indistinguishable from that of the global P. aeruginosa population. Several CF strains were encountered frequently in multiple ecological settings; however, the most frequently encountered CF strains were confined to CF patients. Overall, our data confirm a non-clonal epidemic structure and indicate that most CF strains are a random sample of the broader P. aeruginosa population. The increased abundance of some CF strains in different geographical regions is a likely product of chance colonisation events followed by adaptation to the CF lung and horizontal transmission among patients.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Repeated recolonization of freshwater environments following Pleistocene glaciations has played a major role in the evolution and adaptation of anadromous taxa. Located at the western fringe of Europe, Ireland and Britain were likely recolonized rapidly by anadromous fishes from the North Atlantic following the last glacial maximum (LGM). While the presence of unique mitochondrial haplotypes in Ireland suggests that a cryptic northern refugium may have played a role in recolonization, no explicit test of this hypothesis has been conducted. The three-spined stickleback is native and ubiquitous to aquatic ecosystems throughout Ireland, making it an excellent model species with which to examine the biogeographical history of anadromous fishes in the region. We used mitochondrial and microsatellite markers to examine the presence of divergent evolutionary lineages and to assess broad-scale patterns of geographical clustering among postglacially isolated populations. Our results confirm that Ireland is a region of secondary contact for divergent mitochondrial lineages and that endemic haplotypes occur in populations in Central and Southern Ireland. To test whether a putative Irish lineage arose from a cryptic Irish refugium, we used approximate Bayesian computation (ABC). However, we found no support for this hypothesis. Instead, the Irish lineage likely diverged from the European lineage as a result of postglacial isolation of freshwater populations by rising sea levels. These findings emphasize the need to rigorously test biogeographical hypothesis and contribute further evidence that postglacial processes may have shaped genetic diversity in temperate fauna.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introduction: The 'scaly-foot gastropod' (Chrysomallon squamiferum Chen et al., 2015) from deep-sea hydrothermal vent ecosystems of the Indian Ocean is an active mobile gastropod occurring in locally high densities, and it is distinctive for the dermal scales covering the exterior surface of its foot. These iron-sulfide coated sclerites, and its nutritional dependence on endosymbiotic bacteria, are both noted as adaptations to the extreme environment in the flow of hydrogen sulfide. We present evidence for other adaptations of the 'scaly-foot gastropod' to life in an extreme environment, investigated through dissection and 3D tomographic reconstruction of the internal anatomy.

Results: Our anatomical investigations of juvenile and adult specimens reveal a large unganglionated nervous system, a simple and reduced digestive system, and that the animal is a simultaneous hermaphrodite. We show that Chrysomallon squamiferum relies on endosymbiotic bacteria throughout post-larval life. Of particular interest is the circulatory system: Chrysomallon has a very large ctenidium supported by extensive blood sinuses filled with haemocoel. The ctenidium provides oxygen for the host but the circulatory system is enlarged beyond the scope of other similar vent gastropods. At the posterior of the ctenidium is a remarkably large and well-developed heart. Based on the volume of the auricle and ventricle, the heart complex represents approximately 4 % of the body volume. This proportionally giant heart primarily sucks blood through the ctenidium and supplies the highly vascularised oesophageal gland. Thus we infer the elaborate cardiovascular system most likely evolved to oxygenate the endosymbionts in an oxygen poor environment and/or to supply hydrogen sulfide to the endosymbionts.

Conclusions: This study exemplifies how understanding the autecology of an organism can be enhanced by detailed investigation of internal anatomy. This gastropod is a large and active species that is abundant in its hydrothermal vent field ecosystem. Yet all of its remarkable features-protective dermal sclerites, circulatory system, high fecundity-can be viewed as adaptations beneficial to its endosymbiont microbes. We interpret these results to show that, as a result of specialisation to resolve energetic needs in an extreme chemosynthetic environment, this dramatic dragon-like species has become a carrying vessel for its bacteria.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

High levels of genetic diversity and high propagule pressure are favoured by conservation biologists as the basis for successful reintroductions and ensuring the persistence of populations. However, invasion ecologists recognize the ‘paradox of invasion’, as successful species introductions may often be characterized by limited numbers of individuals and associated genetic bottlenecks. In the present study, we used a combination of high-resolution nuclear and mitochondrial genetic markers to investigate the invasion history of Reeves' muntjac deer in the British Isles. This invasion has caused severe economic and ecological damage, with secondary spread currently a concern throughout Europe and potentially globally. Microsatellite analysis based on eight loci grouped all 176 introduced individuals studied from across the species' range in the UK into one genetic cluster, and seven mitochondrial D-loop haplotypes were recovered, two of which were present at very low frequency and were related to more common haplotypes. Our results indicate that the entire invasion can be traced to a single founding event involving a low number of females. These findings highlight the fact that even small releases of species may, if ignored, result in irreversible and costly invasion, regardless of initial genetic diversity or continual genetic influx.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The genomic architecture underlying ecological divergence and ecological speciation with gene flow is still largely unknown for most organisms. One central question is whether divergence is genome-wide or localized in 'genomic mosaics' during early stages when gene flow is still pronounced. Empirical work has so far been limited, and the relative impacts of gene flow and natural selection on genomic patterns have not been fully explored. Here, we use ecotypes of Atlantic cod to investigate genomic patterns of diversity and population differentiation in a natural system characterized by high gene flow and large effective population sizes, properties which theoretically could restrict divergence in local genomic regions. We identify a genomic region of strong population differentiation, extending over approximately 20 cM, between pairs of migratory and stationary ecotypes examined at two different localities. Furthermore, the region is characterized by markedly reduced levels of genetic diversity in migratory ecotype samples. The results highlight the genomic region, or 'genomic island', as potentially associated with ecological divergence and suggest the involvement of a selective sweep. Finally, we also confirm earlier findings of localized genomic differentiation in three other linkage groups associated with divergence among eastern Atlantic populations. Thus, although the underlying mechanisms are still unknown, the results suggest that 'genomic mosaics' of differentiation may even be found under high levels of gene flow and that marine fishes may provide insightful model systems for studying and identifying initial targets of selection during ecological divergence.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As a result of the global decline of fish stocks, an increasing number of fish species are becoming targets of heavy exploitation, often concomitantly with a lack of biological knowledge on their structure and demographics. Here we present 11 new polymorphic microsatellite loci, isolated from the slinger sea bream (Chrysoblephus puniceus, Sparidae), a relatively recent target of coastal fisheries in eastern South Africa. Levels of genetic diversity were assessed in 39 individuals collected from the KwaZulu-Natal coast (Park Rynie, South Africa). Observed and expected heterozygosities varied between 0.39 and 0.97 and between 0.53 and 0.96, respectively. One locus (SL35) showed significant heterozygote deficiency and linkage disequilibrium was detected between SL35 and SL1. Importantly, five of these microsatellites cross-amplify in Cheimerius nufar, a sympatric species also subjected to exploitation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The continuing over-exploitation of traditional coastal stocks has resulted in the shift of commercial fishing towards deep-sea ecosystems in many parts of the world. The effects on target and non-target species have been dramatic; particularly for the deep-sea sharks. With the aim of providing tools that will allow the assessment of population genetic structure of Centroselachus crepidater, novel microsatellite loci have been developed for this deep-sea elasmobranch. Seven of these markers showed between 3 and 7 alleles per locus in two North Atlantic populations, with observed and expected heterozygosities between 0.18-0.95 and 0.25-0.82, respectively. Additionally, ten loci cross-amplify in other Elasmobranch species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Over-exploitation of traditional coastal stocks and a rising demand for seafood have resulted in the shift of commercial fishing towards less-known, deep-sea species in many parts of the world. Yet, the lack of knowledge of the biology, ecology and life-history of these species represents a serious impediment for establishing sound stock management plans. With the aim of providing tools that will allow assessment of the population genetic structure of Macrourus berglax, we have isolated and characterised a suite of novel microsatellite loci for this deep sea grenadier. Eight of these markers showed between 4 and 11 alleles per locus in two distant North Atlantic populations, with observed and expected heterozygosities between 0.17-0.83 and 0.35-0.87, respectively. Importantly, eight of these loci also cross-amplify in other Macrourid species. 

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Apesar da fauna de mamíferos Neotropicais ser uma das mais ricas do mundo, o nosso conhecimento sobre os limites de espécies, distribuições geográficas e relações filogenéticas está ainda agora no seu início. As áreas de transição entre os dois maiores biomas da América do Sul, o Cerrado e a Amazónia, são ainda menos conhecidas. Até ao momento, escassos estudos focaram os pequenos mamíferos destas áreas. Destes estudos, apenas dois apresentam dados taxonómicos e de distribuição geográfica de uma lista de espécies reduzida e, nenhum é focado nos processos evolutivos que conduziram à diversidade destas áreas. O presente trabalho tem como objectivo aumentar o conhecimento básico sobre a diversidade do médio Rio Araguaia, na região central do Brasil, através da amostragem e análise de espécies de pequenos mamíferos, integrando um intenso trabalho de campo, de laboratório e de museu. Desta forma, um total de 22 espécies é registado para o médio Araguaia. De entre estas espécies, descreve-se uma espécie nova de Rhipidomys, regista-se uma espécie não descrita de Thrichomys e uma potencial nova forma de Oligoryzomys, e também se apresenta uma diagnose emendada do obscuro Oecomys cleberi. Para cada espécie, são também descritas as suas características morfológicas e resumem-se os seus aspectos de distribuição geográfica e história natural. Para os quatro géneros acima referidos, são apresentadas as análises filogenéticas que permitem a identificação das espécies. Adicionalmente, os princípios da filogeografia são aplicados para estudar os padrões da distribuição geográfica da diversidade genética de três roedores sigmodontíneos e seis marsupiais didelphídeos. Os resultados obtidos demonstram que o Rio Araguaia forma uma barreira geográfica para espécies especialistas em florestas não-alagáveis; por outro lado, espécies generalistas apresentam partilha de haplótipos em ambas as margens do rio. Argumentamos também que os refúgios florestais e os gradientes poderão ter tido um papel importante para moldar a estrutura genética de populações de pequenos mamíferos no Brasil central. Em suma, os resultados apresentados corroboram a proposição de que a diversidade Neotropical não poderá ser explicada através de um único modelo de especiação e que estes não são mutuamente exclusivos. O entendimento integral dos processos ecológicos e históricos que deram origem à fauna Neotropical, assim como a continuidade de estudos sistemáticos, depende da realização de novas amostragens e consequente enriquecimento dos museus com colecções apropriadas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tese de dout., Ciências do Mar, da Terra e do Ambiente (Ecologia Marinha), Faculdade de Ciências e Tecnologia, Univ. do Algarve, 2012

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The fire salamander complex is quite diverse in the Iberian Peninsula where nine subspecies of Salamandra salamandra are currently recognized. Here, we analysed the geographical distribution of the subspecies S. s. gallaica and S. s. crespoi using partial sequences of the mitochondrial cytochrome b gene of 168 individuals from 12 locations in Portugal. Our results support the existence of a deep lineage divergence between the two subspecies, with non-overlapping geographical distributions except in two contact zones: one in Sesimbra on the western coast, and another in Alcoutim on the southeastern border with Spain. Moreover, S. s. crespoi displays signs of gene flow among the sampled locations whereas S. s. gallaica shows evidence of some restriction to gene flow. Present-day genetic make-up of S. s. gallaica and S. s. crespoi is a result of past historical events, fine-tuned by contemporary Iberian geoclimate. Humid mountain areas were found to harbour increased genetic diversity possibly acting as past refugia during drier interglacial periods. To analyse wider geographical patterns and lineage splitting events within S. salamandra we performed a Bayesian dating analysis completing our data set with previously published sequences. The observed divergences were associated to successive biogeographic scenarios, and to other Iberian species showing similar trends.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

First described more that 150 years ago, the systematics of the genera Geomalacus and Letourneuxia (Arionidae, Gastropoda, Pulmonata) is still challenging. The taxonomic classification of arionid species is based on extremely labile characters such as body size or color that depends both on diet and environment, as well as age. Moreover, there is little information on the genetic diversity and population structure of the Iberian slugs that could provide extra clues to disentangle their problematic classification. The present work uses different analytical tools such as habitat suitability (Ecological Niche Modeling - ENM), cytogenetic analysis and phylogeography to establish the geographical distribution and evolutionary history of these pulmonate slugs. The potential distribution of the four Geomalacus species was modeled using ENM, which allowed the identification of new locations for G. malagensis, including a first report in Portugal. Also, it was predicted a much wider distribution for G. malagensis and G. oliveirae than previously known. Classical cytogenetic analyses were assayed with reproductive and a novel use of somatic tissues (mouth and tentacles) returning the number of chromosomes for the four Geomalacus species and L. numidica (n = 31, 2n = 62) and the respective karyotypes. G. malagensis and L. numidica present similar chromosome morphologies and karyotypic formulae, being more similar to each other than the Geomalacus among themselves. We further reconstructed the phylogeny of the genera Geomalacus and Letourneuxia using partial sequences of the mitochondrial cytochrome oxidase subunit I (COI) and the nuclear ribosomal small subunit (18S rRNA), and applied an independent evolutionary rate method, the indicator vectors correlation, to evaluate the existence of cryptic diversity within species. The five nominal species of Geomalacus and Letourneuxia comprise 14 well-supported cryptic lineages. Letourneuxia numidica was retrieved as a sister group of G. malagensis. G. oliveirae is paraphyletic with respect to G. anguiformis. According to our dating estimates, the most recent common ancestor of Geomalacus dates back to the Middle Miocene (end of the Serravallian stage). The major lineage splitting events within Geomalacus occurred during the dry periods of the Zanclean stage (5.3-3.6 million years) and some lineages were confined to more humid mountain areas of the Iberian Peninsula, which lead to a highly geographically structured mitochondrial genetic diversity. The major findings of this are the following: (1) provides updated species distribution maps for the Iberian Geomalacus expanding the known geographic distribution of the concerned species, (2) unravels the cryptic diversity within the genera Geomalacus and Letourneuxia, (3) Geomalacus oliveirae is paraphyletic with G. anguiformis and (4) Letourneuxia numidica is sister group of G. malagensis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tese de doutoramento, Ciências e Tecnologias da Saúde (Microbiologia), Universidade de Lisboa, Faculdade de Medicina, 2014