876 resultados para gas entrainment
Resumo:
We reinvestigate the dynamics of the grow and collapse of Bose-Einstein condensates in a system of trapped ultracold atoms with negative scattering lengths, and found a new behavior in the long time scale evolution: the number of atoms can go far beyond the static stability limit. The condensed state is described by the solution of the time-dependent nonlinear Schrödinger equation, in a model that includes atomic feeding and three-body dissipation. Our results for the model show that, by changing the feeding parameter and when a substantial depletion of the ground-state exists, a chaotic behavior is found. We consider a criterion proposed by Deissler and Kaneko [Phys. Lett. A 119, 397 (1987)] to diagnose spatiotemporal chaos. ©2000 The American Physical Society.
Resumo:
A rapid and efficient method is described for the determination of thiabendazole and imazalil residues in lemons (peel and pulp). The procedure is based on the extraction with an hexane:ethyl acetate mixture (1:1, v/v) and gas chromatographic analysis using thermionic specific detection (TSD). The possibility of matrix effect was also studied. Mean recoveries from 8 replicates of fortified samples ranged from 79% to 109%, with relative standard deviation values between 2.4% to 12.8%. The detection and quantification limits of the method were 0.2 mg kg-1 and 0.5 mg kg-1, respectively.
Resumo:
Incubating eggs (1,800 total) produced by a commercial flock of Cobb broiler breeders were used to determine the effects of storage duration (3 and 18 d) on gas partial pressure, thyroid hormones, and hatching parameters. Partial pressure of oxygen (pO2) and carbon dioxide (pCO2) were measured on d 18 and at internal pipping (IP) during incubation. Blood samples were collected for determination of triiodothyronine (T3), thyroxine (T4), and corticosterone concentrations in the embryos at IP and in newly hatched chicks. From 464 to 510 h of incubation, eggs were checked individually every 2 h to determine the timing and duration of IP, external pipping (EP), and total hatching time. At 18 d of incubation and at IP, pCO2 was greater in air cell of eggs stored for 3 d compared to those stored for 18 d (P < 0.05), but pO2 was greater in eggs stored for 18 d. At IP, T3 and corticosterone levels were higher in plasma of the embryos of eggs stored for 3 d compared to those stored for 18 d, but it was the reverse in newly hatched chicks (P < 0.05). Embryos from eggs stored for 18 d required more time to complete IP compared to embryos of eggs stored for only 3 d (P < 0.05), whereas the duration of EP was not affected by storage. The overall longer incubation was, however, not only due to prolonged IP but also to later occurrence of IP. It was concluded that prolonged IP as a result of long storage may be related to the late increase in corticosterone level, which may be a necessary stimulus for higher T 3/T4 ratio, late increase in pCO2 level, and decrease in pO2. The effect of long storage was a delay in hatching and a continuous increase in T3 due to higher corticosterone levels between IP and hatching, which may be an indication of the more stressful event of hatching of embryos from eggs stored longer. Differences in pCO2, pO2, T3, T4, and corticosterone levels in the incubating eggs may be manifestations of these changes culminating in altered hatching parameters and consequently differences in chick quality and growth potentials.
Resumo:
Modern restorative dentistry has been playing an outstanding role lately since composite resins, allied to adhesive systems, have been widely applied on anterior and posterior teeth restorations. The evolution of composite resins has mostly been verified due to the improvement of their aesthetic behavior and the increase in their compressive and abrasive strengths. In spite of these developments, the polymerization shrinkage inherent to the material has been a major deficiency that, so far, has been impossible to avoid. Using a gas pycnometry, this research investigated the polymerization shrinkage of three packable composite resins: Filtek P60 (3M), Prodigy Condensable (Kerr), and SureFil (Dentsply/Caulk), varying the distance from the light source to the surface of the resins (2 mm or 10 mm). The pycnometer Accupyc 1330 (Micromeritics, USA) precisely records helium displacement, allowing fast and reliable measurements of the volume of composite resin immediately before and after polymerization, without interference of temperature or humidity. Results were not found to be statistically different for the three tested resins, either for 2 mm or 10 mm-distance from the light source to the composite surface.
Resumo:
A flow-injection system is proposed for the spectrophotometric determination of sulphite in white wines. The method involves analyte conversion to SO2, gas diffusion through a Teflon® semi-permeable membrane, collection into an alkaline stream (pH 8), reaction with Malachite green (MG) and monitoring at 620 nm. With a concentric tubular membrane, the system design was simplified. Influence of reagent concentrations, pH of donor and acceptor streams, temperature, timing, surfactant addition and presence of potential interfering species of the wine matrix were investigated. A pronounced (ca. 100%) enhancement in sensitivity was noted by adding cetylpyridinium chloride (CPC). The proposed system is robust and baseline drift is not observed during 4 h operating periods. Only 400 μL of sample and 0.32 mg MG are required per determination. The system handles 30 samples per hour, yielding precise results (r.s.d. < 0.015 for 1.0 - 20.0 mg L-1 SO2) in agreement with those obtained by an alternative procedure.
Resumo:
Two highly sensitive and selective methods based on gas chromatography coupled to mass spectrometry (GC-MS) in the selected ion monitoring (SIM) mode have been developed for the quantification of 2,6-dichlorophenol (2,6-DCP), a sex pheromone of the tick females of Anocentor nitens. Standard addition method and calibration curve techniques using 5-bromine-4-hydroxy-3- methoxybenzaldehyde (5-BrV) as internal standard (IS) afforded detection limit of 0.1ngml-1. The calibration curve was linear over the concentration range from 0.5 to 500ngml-1 for 2,6-DCP. Results show that the concentration range of sex pheromone in the extracts samples was 1.08-10.35ngml-1. The methods developed provided reliable procedures to determine amounts of 2,6-DCP present in ticks. © 2003 Elsevier B.V. All rights reserved.
Resumo:
This paper reports the construction of an axisymmetric nonpremixed piloted jet burner, with well-defined initial and boundary conditions, known as the Delft burner, to assess turbulence-chemistry interaction in non-premixed turbulent flames. Detailed experimental information is described, involving hot-wire anemometry, thin-wire thermocouples and chemiluminescence visualization measurements. Radial profile of the axial mean velocity indicates excellent agreement between flow patterns developed within Delft installation and the one described herein. Chemiluminescence emissions from CH and C2 free-radicals were acquired with a CCD camera. Tomography reconstruction analysis was utilised to compare radical emissions and temperature spatial distributions. There was a strong dependence between temperature and CH/C 2 emissions. This is an indication that these radicals can be used in flame front studies.
Resumo:
This work presents and describes in detail the pressure profile in a conical tube with the unavoidable steady-state outgassing, plus a transient gas source, like, for instance, in an accelerator, when particles from the beam hit the walls. Mathematical and physical formulations are given and detailed; specific conductance, specific throughput and a detailed discussion about the boundary conditions are presented. These concepts and approach are applied to usual realistic cases, such as conical tubes, with typical laboratory dimensions. © 2005 IEEE.
Resumo:
Within the next decade, the improved version 2 of Global Ozone Monitoring Experiment (GOME-2), a ultraviolet-visible spectrometer dedicated to the observation of key atmospheric trace species from space, will be launched successively on board three EUMETSAT Polar System (EPS) MetOp satellites. Starting with the launch of MetOp-1 scheduled for summer 2006, the GOME-2 series will extend till 2020 the global monitoring of atmospheric composition pioneered with ERS-2 GOME-1 since 1995 and enhanced with Envisat SCIAMACHY since 2002 and EOS-Aura OMI since 2004. For more than a decade, an international pool of scientific teams active in ground-and space-based ultraviolet-visible remote sensing have contributed to the successful post-launch validation of trace gas data products and the associated maturation of retrieval algorithms for the latter satellites, ensuring that geophysical data products are/become reliable and accurate enough for intended research and applications. Building on this experience, this consortium plans now to develop and carry out appropriate validation of a list of GOME-2 trace gas column data of both tropospheric and stratospheric relevance: nitrogen dioxide (NO 2), ozone (O 3), bromine monoxide (BrO), chlorine dioxide (OClO), formaldehyde (HCHO), and sulphur dioxide (SO 2). The proposed investigation will combine four complementary approaches resulting in an end-to-end validation of expected column data products.
Resumo:
In this paper a comparative analysis of the environmental impact caused by the use of natural gas and diesel in thermoelectric power plants utilizing combined cycle is performed. The objective is to apply a thermoeconomical analysis in order to compare the two proposed fuels. In this analysis, a new methodology that incorporates the economical engineering concept to the ecological efficiency once Cardu and Baica [1, 2], which evaluates, in general terms, the environmental impacts caused by CO2, SO2, NOx and Particulate Matter (PM), adopting as reference the air quality standards in vigour is employed. The thermoeconomic model herein proposed utilizes functional diagrams that allow the minimization the Exergetic Manufacturing Cost, which represents the cost of production of electricity incorporating the environmental impact effects to study the performance of the thermoelectric power plant [3,4], It follows that it is possible to determine the environmental impact caused by thermoelectric power plants and, under the ecological standpoint, the use of natural gas as a fuel is the best option compared to the use of the diesel, presenting ecological efficiency values of 0.944 and 0.914 respectively. From the Exergoeconomic point of view of, it was found out that the EMC (Exergetic Manufacturing Cost) is better when natural gas is used as fuel compared to the diesel fuel. Copyright © 2006 by ASME.
Resumo:
Study of consumption rate and gaseous pollutant emission from engine tests simulating real work conditions, using spark point manually controlled and exhaust gas recirculation (EGR) in diverse proportion levels. The objective of this work is to re-examine the potential of the EGR conception, a well-known method of combustion control, employed together electronic fuel injection and three-way catalytic converter closed-loop control at a spark ignition engine, verifying the performance characteristics and technical availability of this conception to improve pollution control, fuel economy at low torque drive condition and to improve the engine exhaust components useful life. The pollutant emissions and consumption levels under operational conditions simulations were analysed and compared with the expected by concerning theory and real tests performed by EGR equipped engines by factory. Copyright © 2006 Society of Automotive Engineers, Inc.
Resumo:
This work describes a fabrication and test sequence of microvalves installed on micronozzles. The technique used to fabricate the micronozzles was powder blasting. The microvalves are actuators made from PVDF (polivinylidene fluoride), that is a piezoelectric polymer. The micronozzles have convergent-divergent shape with external diameter of 1mm and throat around 230μm. The polymer have low piezoelectric coefficient, for this reason a bimorph structure with dimensions of 2mm width and 4mm of length was build (two piezoelectric sheets were glued together with opposite polarization). Both sheets are recovered with a conductor thin film used as electrodes. Applying a voltage between the electrodes one sheet expands while the other contracts and this generate a vertical movement to the entire actuator. Appling +300V DC between the electrodes the volume flux rate, for a pressure ratio of 0.5, was 0.36 sccm. Applying -200V DC between the electrodes (that means it closed) the volume flux rate was 0.32 sccm, defining a possible range of flow between 0.32 and 0.36 sccm. The third measurement was performed using AC voltage (200V AC with frequency of 1Hz), where the actuator was oscillating. For pressure ratio of 0.5, the flow rate was 0.62 sccm. © 2008 IOP Publishing Ltd.
Resumo:
A green ceramic tape micro heat exchanger was developed using LTCC technology. The device was designed by using a CAD software and 2D and 3D simulations using a CFD package (COMSOL Multiphysics) to evaluate the fluid behavior in the microchannels. The micro heat exchanger is composed of five thermal exchange plates in cross flow arrangement and two connecting plates; heat exchanger dimensions are 26 × 26 × 6 mm3. Preliminary tests were carried out to characterize the device both in atmospheric pressure and in vacuum. The same techniques used in vacuum technology were applied to check the rotameters and to prevent device leakages. Thermal performance of the micro heat exchanger was experimentally tested. © 2009 Elsevier B.V. All rights reserved.