996 resultados para force constant
Resumo:
A force field model of phosphorus has been developed based on density functional (DF) computations and experimental results, covering low energy forms of local tetrahedral symmetry and more compact (simple cubic) structures that arise with increasing pressure. Rules tailored to DF data for the addition, deletion, and exchange of covalent bonds allow the system to adapt the bonding configuration to the thermodynamic state. Monte Carlo simulations in the N-P-T ensemble show that the molecular (P-4) liquid phase, stable at low pressure P and relatively low temperature T, transforms to a polymeric (gel) state on increasing either P or T. These phase changes are observed in recent experiments at similar thermodynamic conditions, as shown by the close agreement of computed and measured structure factors in the molecular and polymer phases. The polymeric phase obtained by increasing pressure has a dominant simple cubic character, while the polymer obtained by raising T at moderate pressure is tetrahedral. Comparison with DF results suggests that the latter is a semiconductor, while the cubic form is metallic. The simulations show that the T-induced polymerization is due to the entropy of the configuration of covalent bonds, as in the polymerization transition in sulfur. The transition observed with increasing P is the continuation at high T of the black P to arsenic (A17) structure observed in the solid state, and also corresponds to a semiconductor to metal transition. (C) 2004 American Institute of Physics.
Resumo:
Thin film capacitor structures in which the dielectric is composed of superlattices of the relaxors [0.2Pb(Zn1/3Nb2/3)O- 3-0.8BaTiO(3)] and Pb(Mg1/3Nb2/3)O-3 have been fabricated by pulsed laser deposition. Superlattice wavelength (Lambda) was varied between similar to3 and similar to 600 nm, and dielectric properties were investigated as a function of Lambda. Progressive enhancement of the dielectric constant was observed on decreasing Lambda, and, in contrast to previous work, this was not associated with the onset of Maxwell-Wagner behavior. Polarization measurements as a function of temperature suggested that the observed enhancement in dielectric constant was associated with the onset of a coupled response. The superlattice wavelength (Lambda =20 nm) at which coupled functional behavior became apparent is comparable to that found in literature for the onset of coupled structural behavior (between Lambda =5 nm and Lambda =10 nm). (C) 2001 American Institute of Physics.
Resumo:
Pulsed laser deposition was used to make a series of Au/Ba0.5Sr0.5TiO3 (BST)/SrRuO3/MgO thin film capacitors with dielectric thickness ranging from similar to15 nm to similar to1 mum. Surface grain size of the dielectric was monitored as a function of thickness using both atomic force microscopy and transmission electron microscopy. Grain size data were considered in conjunction with low field dielectric constant measurements. It was observed that the grain size decreased with decreasing thickness in a manner similar to the dielectric constant. Simple models were developed in which a functionally inferior layer at the grain boundary was considered as responsible for the observed dielectric behavior. If a purely columnar microstructure was assumed, then constant thickness grain-boundary dead layers could indeed reproduce the series capacitor dielectric response observed, even though such layers would contribute electrically in parallel with unaffected bulk- like BST. Best fits indicated that the dead layers would have a relative dielectric constant similar to40, and thickness of the order of tens of nanometers. For microstructures that were not purely columnar, models did not reproduce the observed dielectric behavior well. However, cross-sectional transmission electron microscopy indicated columnar microstructure, suggesting that grain boundary dead layers should be considered seriously in the overall dead-layer debate. (C) 2002 American Institute of Physics.
Resumo:
We present a practical scheme for performing ab initio supercell calculations of charged slabs at constant electron chemical potential mu, rather than at constant number of electrons N-e. To this end, we define the chemical potential relative to a plane (or "reference electrode") at a finite distance from the slab (the distance should reflect the particular geometry of the situation being modeled). To avoid a net charge in the supercell, and thus make possible a standard supercell calculation, we restore the electroneutrality of the periodically repeated unit by means of a compensating charge, whose contribution to the total energy and potential is subtracted afterwards. The "constant mu" mode enables one to perform supercell calculation on slabs, where the slab is kept at a fixed potential relative to the reference electrode. We expect this to be useful in modeling many experimental situations, especially in electro-chemistry. (C) 2001 American Institute of Physics.
Resumo:
Recent experimental neutron diffraction data and ab initio molecular dynamics simulation of the ionic liquid dimethylimidazolium chloride ([dmim]Cl) have provided a structural description of the system at the molecular level. However, partial radial distribution functions calculated from the latter, when compared to previous classical simulation results, highlight some limitations in the structural description offered by force fieldbased simulations. With the availability of ab initio data it is possible to improve the classical description of [dmim]Cl by using the force matching approach, and the strategy for fitting complex force fields in their original functional form is discussed. A self-consistent optimization method for the generation of classical potentials of general functional form is presented and applied, and a force field that better reproduces the observed first principles forces is obtained. When used in simulation, it predicts structural data which reproduces more faithfully that observed in the ab initio studies. Some possible refinements to the technique, its application, and the general suitability of common potential energy functions used within many ionic liquid force fields are discussed.
Resumo:
The total current-induced force on atoms in a Cu wire containing a vacancy are calculated using the self consistent one-electron density matrix in the presence of an electric current, without separation into electron-wind and direct forces. By integrating the total current-induced force, the change in vacancy migration energy due to the current is calculated. We use the change in migration energy with current to infer an effective electromigration driving force F-e. Finally, we calculate the proportionality constant rho* between F-e and the current density in the wire.
Resumo:
This work deals with modelling and experimental verification of desalination theory (surface force pore flow) . The work has direct application in desalination of sea water.
Resumo:
The purpose of this paper is to derive the dynamical equations for the period vectors of a periodic system under constant external stress. The explicit starting point is Newton’s second law applied to halves of the system. Later statistics over indistinguishable translated states and forces associated with transport of momentum are applied to the resulting dynamical equations. In the final expressions, the period vectors are driven by the imbalance between internal and external stresses. The internal stress is shown to have both full interaction and kinetic-energy terms.
Resumo:
The effects of linear scaling of the atomic charges of a reference potential on the structure, dynamics, and energetics of the ionic liquid 1,3-dimethylimidazolium chloride are investigated. Diffusion coefficients that span over four orders of magnitude are observed between the original model and a scaled model in which the ionic charges are +/- 0.5 e. While the three-dimensional structure of the liquid is less affected, the partial radial distribution functions change markedly-with the positive result that for ionic charges of +/- 0.7 e, an excellent agreement is observed with ab initio molecular dynamics data. Cohesive energy densities calculated from these partial-charge models are also in better agreement with those calculated from the ab initio data. We postulate that ionic-liquid models in which the ionic charges are assumed to be +/- 1 e overestimate the intermolecular attractions between ions, which results in overstructuring, slow dynamics, and increased cohesive energy densities. The use of scaled-charge sets may be of benefit in the simulation of these systems-especially when looking at properties beyond liquid structure-thus providing on alternative to computationally expensive polarisable force fields.
Resumo:
Background. Older adults typically exhibit dramatic reductions in the rate of force development and deficits in the execution of rapid coordinated movements. The purpose of the current study was to investigate the association between the reduced rate of force development exhibited by older adults and the ability to coordinate groups of muscles.
Resumo:
In young adults, improvements in the rate of force development as a result of resistance training are accompanied by increases in neural drive in the very initial phase of muscle activation. The purpose of this experiment was to determine if older adults also exhibit similar adaptations in response to rate of force development (RFD) training. Eight young (21-35 years) and eight older (60-79 years) adults were assessed during the production of maximum rapid contractions, before and after four weeks of progressive resistance training for the elbow flexors. Young and older adults exhibited significant increases (P<0.01) in peak RFD, of 25.6% and 28.6% respectively. For both groups the increase in RFD was accompanied by an increase in the root mean square (RMS) amplitude and in the rate of rise (RER) in the electromyogram (EMG) throughout the initial 100 ms of activation. For older adults, however, this training response was only apparent in the brachialis and brachioradialis muscles. This response was not observed in surface EMG recorded from the biceps brachii muscle during either RFD testing or throughout training, nor was it observed in the pronator teres muscle. The minimal adaptations observed for older adults in the bifunctional muscles biceps brachii and pronator teres are considered to indicate a compromise of the neural adaptations older adults might experience in response to resistance training.