940 resultados para experimental visual perception


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent experimental studies have shown that development towards adult performance levels in configural processing in object recognition is delayed through middle childhood. Whilst partchanges to animal and artefact stimuli are processed with similar to adult levels of accuracy from 7 years of age, relative size changes to stimuli result in a significant decrease in relative performance for participants aged between 7 and 10. Two sets of computational experiments were run using the JIM3 artificial neural network with adult and 'immature' versions to simulate these results. One set progressively decreased the number of neurons involved in the representation of view-independent metric relations within multi-geon objects. A second set of computational experiments involved decreasing the number of neurons that represent view-dependent (nonrelational) object attributes in JIM3's Surface Map. The simulation results which show the best qualitative match to empirical data occurred when artificial neurons representing metric-precision relations were entirely eliminated. These results therefore provide further evidence for the late development of relational processing in object recognition and suggest that children in middle childhood may recognise objects without forming structural description representations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We compared judgements of the simultaneity or asynchrony of visual stimuli in individuals with autism spectrum disorders (ASD) and typically-developing controls using Magnetoencephalography (MEG). Two vertical bars were presented simultaneously or non-simultaneously with two different stimulus onset delays. Participants with ASD distinguished significantly better between real simultaneity (0 ms delay between two stimuli) and apparent simultaneity (17 ms delay between two stimuli) than controls. In line with the increased sensitivity, event-related MEG activity showed increased differential responses for simultaneity versus apparent simultaneity. The strongest evoked potentials, observed over occipital cortices at about 130 ms, were correlated with performance differences in the ASD group only. Superior access to early visual brain processes in ASD might underlie increased resolution of visual events in perception. © 2012 Springer Science+Business Media New York.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To examine visual outcomes following bilateral implantation of the FineVision trifocal intraocular lens (IOL; PhysIOL, Liège, Belgium). Methods: 26 patients undergoing routine cataract surgery were implanted bilaterally with the FineVision Trifocal IOL and followed up post-operatively for 3 months. The FineVision optic features a combination of 2 diffractive structures, resulting in distance, intermediate (+1.75 D add) and near vision (+3.50 D add) zones. Apodization of the optic surface increases far vision dominance with pupil aperture. Data collected at the 3 month visit included uncorrected and corrected distance (CDVA) and near vision; subjective refraction; defocus curve testing (photopic and mesopic); contrast sensitivity (CSV-1000); halometry glare testing and a questionnaire (NAVQ) to gauge near vision function and patient satisfaction. Results: The cohort comprised 15 males and 11 females, aged 52.5–82.4 years (mean 70.6 ± 8.2 years). Mean post-operative UDVA was 0.22 ± 0.14 logMAR, with a mean spherical equivalent refraction of +0.02 ± 0.35 D. Mean CDVA was 0.13 ± 0.10 logMAR monocularly, and 0.09 ± 0.07 logMAR binocularly. Defocus curve testing showed an extensive range of clear vision in both photopic and mesopic conditions. Patients showed high levels of satisfaction with their near vision (mean ± 0.9 ± 0.6, where 0 = completely satisfied, and 4 = completely unsatisfied) and demonstrated good spectacle independence. Conclusion: The FineVision IOL can be considered in patients seeking spectacle dependence following cataract surgery, and provide good patient satisfaction with uncorrected vision.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study we aim to evaluate the impact of ageing and gender on different visual mental imagery processes. Two hundred and fifty-one participants (130 women and 121 men; age range = 18–77 years) were given an extensive neuropsychological battery including tasks probing the generation, maintenance, inspection, and transformation of visual mental images (Complete Visual Mental Imagery Battery, CVMIB). Our results show that all mental imagery processes with the exception of the maintenance are affected by ageing, suggesting that other deficits, such as working memory deficits, could account for this effect. However, the analysis of the transformation process, investigated in terms of mental rotation and mental folding skills, shows a steeper decline in mental rotation, suggesting that age could affect rigid transformations of objects and spare non-rigid transformations. Our study also adds to previous ones in showing gender differences favoring men across the lifespan in the transformation process, and, interestingly, it shows a steeper decline in men than in women in inspecting mental images, which could partially account for the mixed results about the effect of ageing on this specific process. We also discuss the possibility to introduce the CVMIB in clinical assessment in the context of theoretical models of mental imagery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background - Abnormalities in visual processes have been observed in schizophrenia patients and have been associated with alteration of the lateral occipital complex and visual cortex. However, the relationship of these abnormalities with clinical symptomatology is largely unknown. Methods - We investigated the brain activity associated with object perception in schizophrenia. Pictures of common objects were presented to 26 healthy participants (age = 36.9; 11 females) and 20 schizophrenia patients (age = 39.9; 8 females) in an fMRI study. Results - In the healthy sample the presentation of pictures yielded significant activation (pFWE (cluster) < 0.001) of the bilateral fusiform gyrus, bilateral lingual gyrus, and bilateral middle occipital gyrus. In patients, the bilateral fusiform gyrus and bilateral lingual gyrus were significantly activated (pFWE (cluster) < 0.001), but not so the middle occipital gyrus. However, significant bilateral activation of the middle occipital gyrus (pFWE (cluster) < 0.05) was revealed when illness duration was controlled for. Depression was significantly associated with increased activation, and anxiety with decreased activation, of the right middle occipital gyrus and several other brain areas in the patient group. No association with positive or negative symptoms was revealed. Conclusions - Illness duration accounts for the weak activation of the middle occipital gyrus in patients during picture presentation. Affective symptoms, but not positive or negative symptoms, influence the activation of the right middle occipital gyrus and other brain areas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The principal theme of this thesis is the effect of yoked prisms on body posture and egocentric perception. Yoked prisms have been clinically used in the management of a variety of visual and neuro-motor dysfunctions. Most studies have been conducted in pathological populations by studying the effects of prismatic adaptation, without distinguishing short and long term effects. In this study, postural and perceptual prismatic effects have been studied by preventing prism adaptation. A healthy population was selected in order to investigate the immediate prismatic effects, when there is no obvious benefit from their use for the individual. Posturography was used to assess changes in weight distribution and shifts in centre of pressure (barycentre). In addition, photographic analyses were used to assess effects on posture on the x and z axis. Experiments with space board and visual midline shift were used for the evaluation of spatial perception and egocentric localisation. One pair of 8 Δ yoked prisms base left (BL) and one pair of 8 Δ yoked prisms base up (BU) were applied randomly and compared to a pair of plano lenses. Results suggest that immediate prismatic effects take place on a perceptual level and are reflected on an altered body posture respectively without significant changes in weight distribution. Yoked prisms BL showed a rightward rotational effect on spatial perception by expanding space on the z axis when viewing through the base of the prism and constricting space through the apex of the prism. Body posture responded respectively to what was visually perceived by altering posture. A rightward shift and tilt of the head was recorded along with the hips shift and shoulders tilt in the dame direction. Additionally, right shoulder shifted backwards and an angular midline shift to the right was recorded. The egocentric localisation was affected by shifting the midline perception to the left. Yoked prisms BU resulted on a head shift forward and a reduction of the head-neck angle by bringing the chin closer to the chest. The egocentric localisation was altered on the vertical axis providing subjects the perception that their eye level was higher during the experiment. In conclusion, yoked prisms seemed to induce changes in body posture, mainly in the upper body and head, without any significant changes in weight distribution. These changes are partially reflected in spatial perception tests and egocentric localisation before any prismatic adaptation takes place.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research pursued the conceptualization, implementation, and verification of a system that enhances digital information displayed on an LCD panel to users with visual refractive errors. The target user groups for this system are individuals who have moderate to severe visual aberrations for which conventional means of compensation, such as glasses or contact lenses, does not improve their vision. This research is based on a priori knowledge of the user's visual aberration, as measured by a wavefront analyzer. With this information it is possible to generate images that, when displayed to this user, will counteract his/her visual aberration. The method described in this dissertation advances the development of techniques for providing such compensation by integrating spatial information in the image as a means to eliminate some of the shortcomings inherent in using display devices such as monitors or LCD panels. Additionally, physiological considerations are discussed and integrated into the method for providing said compensation. In order to provide a realistic sense of the performance of the methods described, they were tested by mathematical simulation in software, as well as by using a single-lens high resolution CCD camera that models an aberrated eye, and finally with human subjects having various forms of visual aberrations. Experiments were conducted on these systems and the data collected from these experiments was evaluated using statistical analysis. The experimental results revealed that the pre-compensation method resulted in a statistically significant improvement in vision for all of the systems. Although significant, the improvement was not as large as expected for the human subject tests. Further analysis suggest that even under the controlled conditions employed for testing with human subjects, the characterization of the eye may be changing. This would require real-time monitoring of relevant variables (e.g. pupil diameter) and continuous adjustment in the pre-compensation process to yield maximum viewing enhancement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Current reform initiatives recommend that school geometry teaching and learning include the study of three-dimensional geometric objects and provide students with opportunities to use spatial abilities in mathematical tasks. Two ways of using Geometer's Sketchpad (GSP), a dynamic and interactive computer program, in conjunction with manipulatives enable students to investigate and explore geometric concepts, especially when used in a constructivist setting. Research on spatial abilities has focused on visual reasoning to improve visualization skills. This dissertation investigated the hypothesis that connecting visual and analytic reasoning may better improve students' spatial visualization abilities as compared to instruction that makes little or no use of the connection of the two. Data were collected using the Purdue Spatial Visualization Tests (PSVT) administered as a pretest and posttest to a control and two experimental groups. Sixty-four 10th grade students in three geometry classrooms participated in the study during 6 weeks. Research questions were answered using statistical procedures. An analysis of covariance was used for a quantitative analysis, whereas a description of students' visual-analytic processing strategies was presented using qualitative methods. The quantitative results indicated that there were significant differences in gender, but not in the group factor. However, when analyzing a sub sample of 33 participants with pretest scores below the 50th percentile, males in one of the experimental groups significantly benefited from the treatment. A review of previous research also indicated that students with low visualization skills benefited more than those with higher visualization skills. The qualitative results showed that girls were more sophisticated in their visual-analytic processing strategies to solve three-dimensional tasks. It is recommended that the teaching and learning of spatial visualization start in the middle school, prior to students' more rigorous mathematics exposure in high school. A duration longer than 6 weeks for treatments in similar future research studies is also recommended.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Perception and recognition of faces are fundamental cognitive abilities that form a basis for our social interactions. Research has investigated face perception using a variety of methodologies across the lifespan. Habituation, novelty preference, and visual paired comparison paradigms are typically used to investigate face perception in young infants. Storybook recognition tasks and eyewitness lineup paradigms are generally used to investigate face perception in young children. These methodologies have introduced systematic differences including the use of linguistic information for children but not infants, greater memory load for children than infants, and longer exposure times to faces for infants than for older children, making comparisons across age difficult. Thus, research investigating infant and child perception of faces using common methods, measures, and stimuli is needed to better understand how face perception develops. According to predictions of the Intersensory Redundancy Hypothesis (IRH; Bahrick & Lickliter, 2000, 2002), in early development, perception of faces is enhanced in unimodal visual (i.e., silent dynamic face) rather than bimodal audiovisual (i.e., dynamic face with synchronous speech) stimulation. The current study investigated the development of face recognition across children of three ages: 5 – 6 months, 18 – 24 months, and 3.5 – 4 years, using the novelty preference paradigm and the same stimuli for all age groups. It also assessed the role of modality (unimodal visual versus bimodal audiovisual) and memory load (low versus high) on face recognition. It was hypothesized that face recognition would improve across age and would be enhanced in unimodal visual stimulation with a low memory load. Results demonstrated a developmental trend (F(2, 90) = 5.00, p = 0.009) with older children showing significantly better recognition of faces than younger children. In contrast to predictions, no differences were found as a function of modality of presentation (bimodal audiovisual versus unimodal visual) or memory load (low versus high). This study was the first to demonstrate a developmental improvement in face recognition from infancy through childhood using common methods, measures and stimuli consistent across age.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electronic Perception Technology (EPT) enables automated equipment to gain artificial sight commonly referred to as "machine-vision” by employing specialty software and embedded sensors to create a “Visual" input field that can be used as a front-end application for transactional behavior. The authors review this new technology and present feasible future applications to the food service industry in enhancing guest services while providing a competitive advantage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the progress of computer technology, computers are expected to be more intelligent in the interaction with humans, presenting information according to the user's psychological and physiological characteristics. However, computer users with visual problems may encounter difficulties on the perception of icons, menus, and other graphical information displayed on the screen, limiting the efficiency of their interaction with computers. In this dissertation, a personalized and dynamic image precompensation method was developed to improve the visual performance of the computer users with ocular aberrations. The precompensation was applied on the graphical targets before presenting them on the screen, aiming to counteract the visual blurring caused by the ocular aberration of the user's eye. A complete and systematic modeling approach to describe the retinal image formation of the computer user was presented, taking advantage of modeling tools, such as Zernike polynomials, wavefront aberration, Point Spread Function and Modulation Transfer Function. The ocular aberration of the computer user was originally measured by a wavefront aberrometer, as a reference for the precompensation model. The dynamic precompensation was generated based on the resized aberration, with the real-time pupil diameter monitored. The potential visual benefit of the dynamic precompensation method was explored through software simulation, with the aberration data from a real human subject. An "artificial eye'' experiment was conducted by simulating the human eye with a high-definition camera, providing objective evaluation to the image quality after precompensation. In addition, an empirical evaluation with 20 human participants was also designed and implemented, involving image recognition tests performed under a more realistic viewing environment of computer use. The statistical analysis results of the empirical experiment confirmed the effectiveness of the dynamic precompensation method, by showing significant improvement on the recognition accuracy. The merit and necessity of the dynamic precompensation were also substantiated by comparing it with the static precompensation. The visual benefit of the dynamic precompensation was further confirmed by the subjective assessments collected from the evaluation participants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To navigate effectively in three-dimensional space, flying insects must approximate distances to nearby objects. Humans are able to use an array of cues to guide depth perception in the visual world. However, some of these cues are not available to insects that are constrained by their rigid eyes and relatively small body size. Flying fruit flies can use motion parallax to gauge the distance of nearby objects, but using this cue becomes a less effective strategy as objects become more remote. Humans are able to infer depth across far distances by comparing the angular distance of an object to the horizon. This study tested if flying fruit flies, like humans, use the relative position of the horizon as a depth cue. Fruit flies in tethered flight were stimulated with a virtual environment that displayed vertical bars of varying elevation relative to a horizon, and their tracking responses were recorded. This study showed that tracking responses of the flies were strongly increased by reducing the apparent elevation of the bar against the horizon, indicating that fruit flies may be able to assess the distance of far off objects in the natural world by comparing them against a visual horizon.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research pursued the conceptualization, implementation, and verification of a system that enhances digital information displayed on an LCD panel to users with visual refractive errors. The target user groups for this system are individuals who have moderate to severe visual aberrations for which conventional means of compensation, such as glasses or contact lenses, does not improve their vision. This research is based on a priori knowledge of the user's visual aberration, as measured by a wavefront analyzer. With this information it is possible to generate images that, when displayed to this user, will counteract his/her visual aberration. The method described in this dissertation advances the development of techniques for providing such compensation by integrating spatial information in the image as a means to eliminate some of the shortcomings inherent in using display devices such as monitors or LCD panels. Additionally, physiological considerations are discussed and integrated into the method for providing said compensation. In order to provide a realistic sense of the performance of the methods described, they were tested by mathematical simulation in software, as well as by using a single-lens high resolution CCD camera that models an aberrated eye, and finally with human subjects having various forms of visual aberrations. Experiments were conducted on these systems and the data collected from these experiments was evaluated using statistical analysis. The experimental results revealed that the pre-compensation method resulted in a statistically significant improvement in vision for all of the systems. Although significant, the improvement was not as large as expected for the human subject tests. Further analysis suggest that even under the controlled conditions employed for testing with human subjects, the characterization of the eye may be changing. This would require real-time monitoring of relevant variables (e.g. pupil diameter) and continuous adjustment in the pre-compensation process to yield maximum viewing enhancement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study reports recommendations for a tactile and graphic wayfinding system aiming to offer more orientability and mobility for visually impaired people (blindness and low vision) at Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte (IFRN), Parnamirim Campus. It was necessary to focus on visual impaired people and approach concepts like orientation and accessibility at the built environment. In order to provide the comprehension of a complex social phenomenon and preserve the meaningful characteristics of the events, this research has developed a single case study in which elements of Post Occupation Evaluation have been used. Its purpose was to allow not only a technical analysis, but also the user perception about the space in use. The chosen tool to collect the user’s opinions and considerations was the Walk Together Method. The collected and analyzed information has demonstrated that, although Parnamirim Campus has implemented some interventions in relation to the spatial accessibility, they are still not enough to create an environment which arranges safety and autonomy for the visual impaired people and the other ones who attend there. This study suggests that it happened because the engineering interventions at the Campus have been based on Brazilian technical standards NBR 9050:2004, which is proper for the physical impaired people, but it does not offer enough information to respond to all the specific needs demanded by all the classifications of visual impairment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study reports recommendations for a tactile and graphic wayfinding system aiming to offer more orientability and mobility for visually impaired people (blindness and low vision) at Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte (IFRN), Parnamirim Campus. It was necessary to focus on visual impaired people and approach concepts like orientation and accessibility at the built environment. In order to provide the comprehension of a complex social phenomenon and preserve the meaningful characteristics of the events, this research has developed a single case study in which elements of Post Occupation Evaluation have been used. Its purpose was to allow not only a technical analysis, but also the user perception about the space in use. The chosen tool to collect the user’s opinions and considerations was the Walk Together Method. The collected and analyzed information has demonstrated that, although Parnamirim Campus has implemented some interventions in relation to the spatial accessibility, they are still not enough to create an environment which arranges safety and autonomy for the visual impaired people and the other ones who attend there. This study suggests that it happened because the engineering interventions at the Campus have been based on Brazilian technical standards NBR 9050:2004, which is proper for the physical impaired people, but it does not offer enough information to respond to all the specific needs demanded by all the classifications of visual impairment.