995 resultados para electrochemical polymerization
Resumo:
A systematic study has been made for the electrochemical oxidation reaction of biliverdin (BV) in pure dimethylformamide (DMF) and in DMF - H2O mixed solvent by in situ time resolved spectroelectrochemical and cyclic voltametric techniques. The experiments show that not only the oxidation of BV is promoted, the reaction mechanism is also changed from a ECEC to a ECCECC process by the introduction of water into DMF.
Resumo:
The surface topography of highly oriented pyrolytic graphite (HOPG) which has been subjected to anodized treatment at a low potential (less positive) has been exhaustively studied using scanning tunneling microscopy (STM). Characterization of graphite surface has revealed that a small percentage of the surface (5%-10%) shows superperiodic features. In this case, the typical topographical features are triangular networks with the observed periodicities in the plane ranging from approximately 26 to 240 nm with peak-to-peak amplitudes out of the plane extending from 7 to 35 Angstrom. We show that this triangular network can be attributed to the injection of electrolyte and solvent in the earliest stages of oxidation of the basal HOPG electrode surface. A simple model is proposed to explain this phenomenon.
Resumo:
An electrochemical pretreatment regime for a cylindrical carbon fibre microelectrode was optimized for the determination of aminopyrine (AM) and its metabolite 4-aminoantipyrine (AAN) by capillary electrophoresis (CE)-electrochemical detection (ED). Under optimized conditions, a response of high sensitivity and stability was obtained for AM and AAN at a detection voltage as low as 0.9 V following CE-ED, by which AM and AAN were separated satisfactorily. The calibration graph was linear over three orders of magnitude and the limits of detection for AM and AAN were in the femtomole range.
Resumo:
The electrochemical reduction behavior of bilirubin (BR) at platinum electrode in DMF was investigated by cyclic voltammetry, in situ electron spin resonance spectroscopy and in situ rapid scanning thin layer spectroelectrochemistry. Experimental results revealed that the reduction of BR firstly undergoes an ECE process: GRAPHICS The generated (BR)(2)(3-). can be re-oxidized to BR and then to purpurin (Pu) by a series of oxidation processes: GRAPHICS However, the re-reduction reactions of Pu are not the reverse processes. The different reduction mechanisms are discussed in detail.
Resumo:
Effects of the potential of anodic oxidation and of potential cycling on the surface structure of a highly oriented pyrolytic graphite (HOPG) electrode were observed by in situ electrochemical scanning tunnelling microscopy (ECSTM) in dilute H2SO4 solution with atomic resolution. With potential cycling between -0.1 V and 1.8 V vs. Ag/AgCl (sat. KCI), some atoms on the top layer of HOPG protrude out of the base plane, and the graphite lattice of these protrusions is still intact but is strained and expanded. With further potential cycling, some protrusions coalesced and some grew larger, and an anomalous superperiodic feature was observed (spacing 90 Angstrom with a rotation 30 degrees relative to atomic corrugations) which superimposed on the atomic corrugation of HOPG. On the topmost of these protrusions, some atoms form oxides and others are still resolved by the ECSTM image. With potential cycling between -0.1 V and + 2.0 V vs. Ag/AgCl (sat. KCl), damage to freshly cleaved HOPG surface is more serious and fast, some ridges are observed, the atomic structure of the HOPG surface is partially and then completely damaged due to the formation of oxide. We also found that anodic oxidation occurred nonuniformly on the surface of HOPG near defects during potential cycling.
Resumo:
A new mono-substituted titanocene, (eta(5)-cyclopentadienyl) [eta(5)-(1-(4-methoxyphenyl) cyclohexyl) cyclopentadienyl] dichlorotitanium (I), has been prepared via a novel modified synthesis, and its X-ray crystal structure has been determined. It crystallizes in the orthorhombic space group P2(1)2(1)2(1) with cell constants a=0.968 0(5) nm, b=1.284 6(5) nm, c=1.694 4(6) nm, Z=4, R=0.066. The I/methylaluminoxane (MAO) catalyst system produces at different polymerization temperatures either an isotactic or a syndiotactic polypropylene, both of which have the combined influence of enantiomorphic-site control and chain-end control, or an atactic polypropylene controlled by Bernoullian propagation mechanism.
Resumo:
The morphology and mechanical properties of polypropylene/high-density polyethylene (PP/HDPE) blends in a wide range of compositions modified by a sequential Ziegler-Natta polymerization product (PP-PE) have been investigated. PP-PE contains multiple components such as PP, ethylene-propylene copolymer (EPC), and high molecular weight polyethylene (HMWPE). The effects of PP-PE on the mechanical properties and morphology of the PP/HDPE blends are the aggregative results of all its individual components. Addition of PP-PE to the blends not only improved the tensile strength of the blends, but the elongation at break increased linearly while the moduli were nearly unchanged. Morphological studies show that the adhesion between the two phases in all the blends of different compositions is enhanced and the dispersed domain sizes of the blends are reduced monotonously with the increment of the content of PP-PE. PP-PE has been demonstrated to be a more effective compatibilizer than EPC. Based on these results, it can be concluded that the tensile strength of the blends depends most on the adhesion between the two phases and the elongation at break depends most on the domain size of the dispersed component. (C) 1995 John Wiley & Sons, Inc.
Resumo:
Three new bimetallic complexes were synthesized and crystalized by reactions of (CF3CO2)(3)Ln With R(1) AlR(2)(Ln=Nd and Y, R(1)=H, R=i-C4H9; Ln=Eu, R=R(1)=C2H5) in tetrahydrofuran solution, and their crystal structures were determined using a X-ray diffraction method. The structures and the questions on valence state and noncoplanarity in the structures were confirmed and cracked by means of H-1 NMR and C-13 NMR spectra, especially by C-13-H-1 COSY 2D NMR technique. A general formula of molecules of the three rare earth complexes was defined as follows: [(mu-CF3CO2)(2)Ln(mu-CF3CHO2)AlR(2) . 2THF](2) A mechanism on the formation of the new complexes was also proposed through the following five steps: alkylating, beta-elimination (or hydrogenation), hydrogen transfer, linkage and association. Both Y-Al and Eu-Al complexes function as a catalyst in polymerization of MMA and ECH. The polymer obtained from the first monomer is mainly syndiotactic chain structure and the polymerization of the last monomer shows higher catalytic activity. The Y-Al complex also capable of ring-opening polymerization of THF in case of adding-vary small amount of ECH and a oxonium ion mechanism of THF polymerization was suggested from the analysis of THF polymer terminal.
Resumo:
An assay procedure utilizing pulsed amperometric detection at a platinum-particles modified electrode has been developed for the determination of cysteine and glutathione in blood samples following preliminary separation by reversed-phase liquid chromatography. A chemically modified electrode (CME) constructed by unique electroreduction from a platinum-salt solution to produce dispersed Pt particles on a glassy carbon surface was demonstrated to catalyze the electo-oxidation of sulfhydryl-containing compounds: DL-cysteine (CYS), reduced glutathione (GSH). When used as the sensing electrode in flow-system pulsed-amperometric detection (PAD), electrode fouling could be avoided using a waveform in which the cathodic reactivation process occurred at a potential of - 1.0 V vs. Ag/AgCl to achieve a cathodic desorption of atomic sulfur. A superior detection limit for these free thiols was obtained at a Pt particle-based GC electrode compared with other methods; this novel dispersed Pt particles CME exhibited high electrocatalytic stability and activity when it was employed as an electrochemical detector in FIA and HPLC for the determination of those organo-sulfur compounds.
Resumo:
Prussian blue has been formed by cyclic voltammetry onto the basal pyrolytic graphite surface to prepare a chemically modified electrode which provides excellent electrocatalysis for both oxidation and reduction of hydrogen peroxide. It is found for the first time that glucose oxidase or D-amino oxidase can be incorporated into a Prussian blue film during its electrochemical growth process. Two amperometric biosensors were fabricated by electrochemical codeposition, and the resulting sensors were protected by coverage with a thin film of Nafion. The influence of various experimental conditions was examined for optimum analytical performance. The glucose sensor responds rapidly to substrates with a detection limit of 2 x 10(-6) M and a linear concentration range of 0.01-3 mM. There was no interference from 2 mM ascorbic acid or uric acid. Another (D-amino acid) sensor gave a detection limit of 3 x 10(-5) M D-alanine, injected with a linear concentration range of 7.0 x 10(-5)-1.4 x 10(-2) M. Glucose and D-amino acid sensors remain relatively stable for 20 and 15 days, respectively. There is no obvious interference from anion electroactive species due to a low operating potential and excellent permselectivity of Nafion.
Resumo:
The polymerization of acrylonitrile initiated by organolanthanide complexes alone is studied for the first time. The effect df polymerization conditions on catalytic activity of the title complex and molecular weight of the polymers produced have been studied.
Resumo:
An integrated CaF2 crystal optically transparent infrared (ir) thin-layer cell was designed and constructed without using any soluble adhesive materials. It is suitable for both aqueous and nonaqueous systems, and can be used not only in ir but also in uv-vis studies. Excellent electrochemical and spectroelectrochemical responses were obtained in evaluating this cell by cyclic voltammetry and steady-state potential step measurements for both ir and uv-vis spectrolectrochemistry with ferri/ferrocyanide in aqueous solution, and with ferrocene/ferrocenium in organic solvent as the testing species, respectively. The newly designed ir cell was applied to investigate the electrochemical reduction process of bilirubin in situ, which provided direct information for identifying the structure of the reduction product and proposing the reaction mechanism.
Resumo:
A series of new catalysts, K-14[Ln(As2W17O61)(2)]. xH(2)O (Ln = La, Pr, Sm, Eu, Gd, Tb, Dy, Tm and Yb) which can electrocatalyze reduction of nitrite are presented and their electrochemical behavior is described in this paper. Bis(2:17-arsenotungstate) lanthanates which are monovacant Dawson derivatives, exhibit two 2-electron and one 1-electron waves, attributed to electron addition and removal from the tungsten-oxide framework that comprises each anion structure. The formal potentials of redox couples are dependent on solution pH. Double-hump principle of formal potentials takes effect with increasing atomic number of lanthanide elements following their special electronic shell structure. The third waves of all the heteropolyanions have good electrocatalytic activities for nitrite reduction at pH 5.0.
Resumo:
In this paper, the electrochemical behaviour of molibdosilicic heteropoly complex with dysprosium K10H3[Dy(SiMo11O39)(2)]. xH(2)O [denoted as Dy(SiMo11)(2)] was studied. Voltammetric behavior of this complex was greatly influenced by pH of solutions. The polypyrrole (PPy) film doped with this complex was prepared by electropolymerization of pyrrole in the presence of Dy(SiMo11)(2) under potential cycling conditions. The microenvironment within the PPy film has an effect on the electrochemical behavior of Dy(SiMo11)(2) entrapped in the film. The film electrode can catalyze the reduction of ClO3- and BrO3-.
Resumo:
The promoter effect of halogen anions for heterogeneous electron transfer between cytochrome c and a gold electrode was studied. It was found that the order of the promoter ability of halogen anions is I- > Br- > Cl- > F-. In addition, factors which can affect the promoter effect were discussed.