976 resultados para cytochrome b6


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Proapoptotic Bcl-2 family members, such as Bax, promote release of cytochrome c from mitochondria, leading to caspase activation and cell death. It was previously reported that modulator of apoptosis protein 1 (MOAP-1), an enhancer of Bax activation induced by DNA damage, is stabilized by Trim39, a protein of unknown function. In this paper, we show that MOAP-1 is a novel substrate of the anaphase-promoting complex (APC/C(Cdh1)) ubiquitin ligase. The influence of Trim39 on MOAP-1 levels stems from the ability of Trim39 (a RING domain E3 ligase) to directly inhibit APC/C(Cdh1)-mediated protein ubiquitylation. Accordingly, small interfering ribonucleic acid-mediated knockdown of Cdh1 stabilized MOAP-1, thereby enhancing etoposide-induced Bax activation and apoptosis. These data identify Trim39 as a novel APC/C regulator and provide an unexpected link between the APC/C and apoptotic regulation via MOAP-1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the intrinsic pathway of apoptosis, cell-damaging signals promote the release of cytochrome c from mitochondria, triggering activation of the Apaf-1 and caspase-9 apoptosome. The ubiquitin E3 ligase MDM2 decreases the stability of the proapoptotic factor p53. We show that it also coordinated apoptotic events in a p53-independent manner by ubiquitylating the apoptosome activator CAS and the ubiquitin E3 ligase HUWE1. HUWE1 ubiquitylates the antiapoptotic factor Mcl-1, and we found that HUWE1 also ubiquitylated PP5 (protein phosphatase 5), which indirectly inhibited apoptosome activation. Breast cancers that are positive for the tyrosine receptor kinase HER2 (human epidermal growth factor receptor 2) tend to be highly aggressive. In HER2-positive breast cancer cells treated with the HER2 tyrosine kinase inhibitor lapatinib, MDM2 was degraded and HUWE1 was stabilized. In contrast, in breast cancer cells that acquired resistance to lapatinib, the abundance of MDM2 was not decreased and HUWE1 was degraded, which inhibited apoptosis, regardless of p53 status. MDM2 inhibition overcame lapatinib resistance in cells with either wild-type or mutant p53 and in xenograft models. These findings demonstrate broader, p53-independent roles for MDM2 and HUWE1 in apoptosis and specifically suggest the potential for therapy directed against MDM2 to overcome lapatinib resistance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Organisms in the wild develop with varying food availability. During periods of nutritional scarcity, development may slow or arrest until conditions improve. The ability to modulate developmental programs in response to poor nutritional conditions requires a means of sensing the changing nutritional environment and limiting tissue growth. The mechanisms by which organisms accomplish this adaptation are not well understood. We sought to study this question by examining the effects of nutrient deprivation on Caenorhabditis elegans development during the late larval stages, L3 and L4, a period of extensive tissue growth and morphogenesis. By removing animals from food at different times, we show here that specific checkpoints exist in the early L3 and early L4 stages that systemically arrest the development of diverse tissues and cellular processes. These checkpoints occur once in each larval stage after molting and prior to initiation of the subsequent molting cycle. DAF-2, the insulin/insulin-like growth factor receptor, regulates passage through the L3 and L4 checkpoints in response to nutrition. The FOXO transcription factor DAF-16, a major target of insulin-like signaling, functions cell-nonautonomously in the hypodermis (skin) to arrest developmental upon nutrient removal. The effects of DAF-16 on progression through the L3 and L4 stages are mediated by DAF-9, a cytochrome P450 ortholog involved in the production of C. elegans steroid hormones. Our results identify a novel mode of C. elegans growth in which development progresses from one checkpoint to the next. At each checkpoint, nutritional conditions determine whether animals remain arrested or continue development to the next checkpoint.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Subteratogenic and other low-level chronic exposures to toxicant mixtures are an understudied threat to environmental and human health. It is especially important to understand the effects of these exposures for contaminants, such as polycyclic aromatic hydrocarbons (PAHs) a large group of more than 100 individual compounds, which are important environmental (including aquatic) contaminants. Aquatic sediments constitute a major sink for hydrophobic pollutants, and studies show PAHs can persist in sediments over time. Furthermore, estuarine systems (namely breeding grounds) are of particular concern, as they are highly impacted by a wide variety of pollutants, and estuarine fishes are often exposed to some of the highest levels of contaminants of any vertebrate taxon. Acute embryonic exposure to PAHs results in cardiac teratogenesis in fish, and early life exposure to certain individual PAHs and PAH mixtures cause heart alterations with decreased swimming capacity in adult fish. Consequently, the heart and cardiorespiratory system are thought to be targets of PAH mixture exposure. While many studies have investigated acute, teratogenic PAH exposures, few studies have longitudinally examined the impacts of subtle, subteratogenic PAH mixture exposures, which are arguably more broadly applicable to environmental contamination scenarios. The goal of this dissertation was to highlight the later-life consequences of early-life exposure to subteratogenic concentrations of a complex, environmentally relevant PAH mixture.

A unique population of Fundulus heteroclitus (the Atlantic killifish or mummichog, hereafter referred to as killifish), has adapted to creosote-based polycyclic aromatic hydrocarbons (PAHs) found at the Atlantic Wood Industries (AW) Superfund site in the southern branch of the Elizabeth River, VA, USA. This killifish population survives in a site heavily contaminated with a mixture of PAHs from former creosote operations. They have developed resistance to the acute toxicity and teratogenic effects caused by the mixture of PAHs in sediment from the site. The primary goal of this dissertation was to compare and contrast later-life outcomes of early-life, subteratogenic PAH mixture exposure in both the Atlantic Wood killifish (AW) and a naïve reference population of killifish from King’s Creek (KC; a relatively uncontaminated tributary of the Severn River, VA). Killifish from both populations were exposed to subteratogenic concentrations of a complex PAH-sediment extract, Elizabeth River Sediment Extract (ERSE), made by collecting sediment from the AW site. Fish were reared over a 5-month period in the laboratory, during which they were examined for a variety of molecular, physiological and behavioral responses.

The central aims of my dissertation were to determine alterations to embryonic gene expression, larval swimming activity, adult behavior, heart structure, enzyme activity, and swimming/cardiorespiratory performance following subteratogenic exposure to ERSE. I hypothesized that subteratogenic exposure to ERSE would impair cardiac ontogenic processes in a way that would be detectable via gene expression in embryos, and that the misregulation of cardiac genes would help to explain activity changes, behavioral deficits, and later-life swimming deficiencies. I also hypothesized that fish heart structure would be altered. In addition, I hypothesized that the AW killifish population would be resistant to developmental exposures and perform normally in later life challenges. To investigate these hypotheses, a series of experiments were carried out in PAH-adapted killifish from Elizabeth River and in reference killifish. As an ancillary project to the primary aims of the dissertation, I examined the toxicity of weaker aryl hydrocarbon receptor (AHR) agonists in combination with fluoranthene (FL), an inhibitor of cytochrome P4501A1 (CYP1A1). This side project was conducted in both Danio rerio (zebrafish) and the KC and AW killifish.

Embryonic gene expression was measured in both killifish populations over an ERSE dose response with multiple time points (12, 24, 48, and 144 hours post exposure). Genes known to play critical roles in cardiac structure/development, cardiac function, and angiogenesis were elevated, indicating cardiac damage and activation of cardiovascular repair mechanisms. These data helped to inform later-life swimming performance and cardiac histology studies. Behavior was assessed during light and dark cycles in larvae of both populations following developmental exposure to ERSE. While KC killifish showed activity differences following exposure, AW killifish showed no significant changes even at concentrations that would cause overt cardiac toxicity in KC killifish. Juvenile behavior experiments demonstrated hyperactivity following ERSE exposure in KC killifish, but no significant behavioral changes in AW killifish. Adult swimming performance via prolonged critical swimming capacity (Ucrit) demonstrated performance costs in the AW killifish. Furthermore, swimming performance decline was observed in KC killifish following exposure to increasing dilutions of ERSE. Lastly, cardiac histology suggested that early-life exposure to ERSE could result in cardiac structural alteration and extravasation of blood into the pericardial cavity.

Responses to AHR agonists resulted in a ranking of relative potency for agonists, and determined which agonists, when combined with FL, caused cardiac teratogenesis. These experiments showed interesting species differences for zebrafish and killifish. To probe mechanisms responsible for cardiotoxicity, a CYP1A-morpholino and a AHR2-morpholino were used to mimic FL effects or attempt to rescue cardiac deformities respectively. Findings suggested that the cardiac toxicity elicited by weak agonist + FL exposure was likely driven by AHR-independent mechanisms. These studies stand in contrast to previous research from our lab showing that moderate AHR agonist + FL caused cardiac toxicity that can be partially rescued by AHR-morpholino knockdown.

My findings will form better characterization of mechanisms of PAH toxicity, and advance our understanding of how subteratogenic mixtures of PAHs exert their toxic action in naïve killifish. Furthermore, these studies will provide a framework for investigating how subteratogenic exposures to PAH mixtures can impact aquatic organismal health and performance. Most importantly, these experiments have the potential to help inform risk assessment in fish, mammals, and potentially humans. Ultimately, this research will help protect populations exposed to subtle PAH-contamination.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previously, we demonstrated that alemtuzumab induction with rapamycin as sole maintenance therapy is associated with an increased incidence of humoral rejection in human kidney transplant patients. To investigate the role of rapamycin in posttransplant humoral responses after T cell depletion, fully MHC mismatched hearts were transplanted into hCD52Tg mice, followed by alemtuzumab treatment with or without a short course of rapamycin. While untreated hCD52Tg recipients acutely rejected B6 hearts (n = 12), hCD52Tg recipients treated with alemtuzumab alone or in conjunction with rapamycin showed a lack of acute rejection (MST > 100). However, additional rapamycin showed a reduced beating quality over time and increased incidence of vasculopathy. Furthermore, rapamycin supplementation showed an increased serum donor-specific antibodies (DSA) level compared to alemtuzumab alone at postoperation days 50 and 100. Surprisingly, additional rapamycin treatment significantly reduced CD4(+) CD25(+) FoxP3(+) T reg cell numbers during treatment. On the contrary, ICOS(+) PD-1(+) CD4 follicular helper T cells in the lymph nodes were significantly increased. Interestingly, CTLA4-Ig supplementation in conjunction with rapamycin corrected rapamycin-induced accelerated posttransplant humoral response by directly modulating Tfh cells but not Treg cells. This suggests that rapamycin after T cell depletion could affect Treg cells leading to an increase of Tfh cells and DSA production that can be reversed by CTLA4-Ig.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel aflatoxin B(1) bioassay was created by introducing a Lipomyces kononenkoae alpha-amylase gene into a strain of S. cerevisiae capable of expressing the human cytochrome P450 3A4 (CYP3A4), and the cognate human CYP450 reductase. This strain and a dextranase-expressing strain were used in the development of a microtitre plate mycotoxin bioassay, which employed methanol as the solvent and polymyxin B nonapeptide as a permeation enhancer. Stable co-expression of the CYP3A4 gene system and of the dextranase and amylase genes in the two bioassay strains was demonstrated. The bioassay signalled toxicity as inhibition of secreted carbohydrase activity, using sensitive fluorimetric assays. The amylase-expressing strain could detect aflatoxin B(1) at 2 ng/ml, and was more sensitive than the dextranase-expressing strain. Aflatoxin G(1) could be detected at 2 microg/ml, and the trichothecene mycotoxin T-2 toxin was detectable at 100 ng/ml.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A cytochrome P-450-dependent benzo[a]pyrene mono-oxygenase enzyme system (BPM) has been identified and partially characterized in males of the shore crab Carcinus maenas (L.). Apparent Km values obtained at 30 °C using microsomal preparations from the antennary glands of animals collected during summer were in the range 1.61–2.11 µM. The cytochrome P-450 content was 0·022 nmol/mg microsomal protein when BPM activity in the same preparation was 0·085 nmol/mg protein/min.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study describes phenotypic and genotypic variations in the planktonic copepod, Centropages typicus (Copepoda: Calanoida) that indicate differentiation between geographical samples. We found consistent differences in the morphology of the chela of the sexually modified fifth pereiopod (P5) of male C. typicus between samples from the Mediterranean, western North Atlantic and eastern North Atlantic. A 560 base pairs (bp) region of the C. typicus mitochondrial cytochrome c oxidase subunit I (COI) and a 462 bp fragment of the nuclear rDNA internal transcribed spacer (ITS) tandem array were analysed to determine whether these morphological variations reflect population genetic differentiation. Mitochondrial haplotype diversity was found to be high with 100 unique COI haplotypes among 116 individuals. Analysis of mtCOI variation suggested differentiation between the Mediterranean and Atlantic populations but no separation was detected within the Atlantic. Intragenomic variation in the ITS array suggested genetic differentiation between samples from the western North Atlantic and those from the eastern North Atlantic and Mediterranean. Breeding experiments would be required to elucidate the extent of genetic isolation between C. typicus from the different population centres.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a macrogeographic study of spatial heterogeneity in an important subarctic Pacific copepod and describe the first genetic analysis of population structure using Continuous Plankton Recorder (CPR) samples. Samples of Neocalanus cristatus were collected at a constant depth of similar to 7 m from two CPR tow-routes, (i) an east-west similar to 6500-km transect from Vancouver Island, Canada to Hokkaido Island, Japan, and (ii) a north-south transect of similar to 2250 km from Anchorage, Alaska to Tacoma, Washington. Analysis of these samples revealed three features of the biology of N. cristatus. First, N. cristatus undergoes small-scale diel vertical migration that is larger among stages CV- adult (3-6 times more abundant at 7 m at night), than stages CI-CIV (only 2-4 times higher at night). Secondly, while there were no regions where N. cristatus did not appear, each transect sampled a few large-scale macrogeographic patches. Thirdly, an analysis of molecular variation, using a partial sequence of the N. cristatus cytochrome oxidase I gene, revealed that 7.3% (P < 0.0001) of the total genetic variation among N. cristatus sampled from macrogeographic patches by the CPR could be explained by spatial heterogeneity. We suggest that spatial heterogeneity at macrogeographic scales may be important in plankton evolution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

DNA barcoding offers an efficient way to determine species identification and to measure biodiversity. For dinoflagellates, an ancient alveolate group of about 2000 described extant species, DNA barcoding studies have revealed large amounts of unrecognized species diversity, most of which is not represented in culture collections. To date, two mitochondrial gene markers, Cytochrome Oxidase I (COI) and Cytochrome b oxidase (COB), have been used to assess DNA barcoding in dinoflagellates, and both failed to amplify all taxa and suffered from low resolution. Nevertheless, both genes yielded many examples of morphospecies showing cryptic speciation and morphologically distinct named species being genetically similar, highlighting the need for a common marker. For example, a large number of cultured Symbiodinium strains have neither taxonomic identification, nor a common measure of diversity that can be used to compare this genus to other dinoflagellates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The taxonomic assignment of Prorocentrum species is based on morphological characteristics; however, morphological variability has been found for several taxa isolated from different geographical regions. In this study, we evaluated species boundaries of Prorocentrum hoffmannianum and Prorocentrum belizeanum based on morphological and molecular data. A detailed morphological analysis was done, concentrating on the periflagellar architecture. Molecular analyses were performed on partial Small Sub-Unit (SSU) rDNA, partial Large Sub-Unit (LSU) rDNA, complete Internal Transcribed Spacer Regions (ITS1-5.8S-ITS2), and partial cytochrome b (cob) sequences. We concatenated the SSU-ITS-LSU fragments and constructed a phylogenetic tree using Bayesian Inference (BI) and maximum likelihood (ML) methods. Morphological analyses indicated that the main characters, such as cell size and number of depressions per valve, normally used to distinguish P. hoffmannianum from P. belizeanum, overlapped. No clear differences were found in the periflagellar area architecture. Prorocentrum hoffmannianum and P. belizeanum were a highly supported monophyletic clade separated into three subclades, which broadly corresponded to the sample collection regions. Subtle morphological overlaps found in cell shape, size, and ornamentation lead us to conclude that P. hoffmanianum and P. belizeanum might be considered conspecific. The molecular data analyses did not separate P. hoffmannianum and P. belizeanum into two morphospecies, and thus, we considered them to be the P. hoffmannianum species complex because their clades are separated by their geographic origin. These geographic and genetically distinct clades could be referred to as ribotypes: (A) Belize, (B) Florida-Cuba, (C1) India, and (C2) Australia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acartia and Paracartia species, often known to co-occur, can exhibit complex life cycles, including the production of resting eggs. Studying and understanding their population dynamics is hindered by the inability to identify eggs and early developmental stages using morphological techniques. We have developed a simple molecular technique to distinguish between the three species of the Acartiidae family (Acartia clausi, A. discaudata and Paracartia grani) that co-occur in the Thau lagoon (43�250N; 03�400E) in southern France. Direct amplification of a partial region of the mitochondrial cytochrome oxidase I gene by polymerase chain reaction and subsequent restriction fragment length polymorphism results in a unique restriction profile for each species. The technique is capable of determining the identity of individual eggs, including resting eggs retrieved from sediment samples, illustrating its application in facilitating population dynamic studies of this ubiquitous and important member of the zooplankton community.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Every aerobic organism expresses cytochrome c oxidase to catalyze reduction of molecular oxygen to water, and takes advantage of this energy releasing reaction to produce an electrochemical gradient used in cellular energy production. The protein SCO (Synthesis of cytochrome c oxidase) is a required assembly factor for the oxidase, conserved across many species. SCO is implicated in the assembly of one of two copper centres (ie., CuA) of cytochrome oxidase. The exact mechanism of SCO’s participation in CuA assembly is not known. SCO has been proposed to bind and deliver copper, or alternatively to act in reductive preparation of the CuA site within the oxidase. In this body of work, the strength and stability of Cu(II) binding to Bacillus subtilis SCO is explored via electronic absorption and fluorescence spectroscopies and by calorimetric methods. An equilibrium dissociation constant (Kd) of 3.5x10-12 M was determined as an upper limit for the BsSCO-Cu(II) interaction, via differential scanning calorimetry. In the first reported case for a SCO homolog, dissociation kinetics of Cu(II) from BsSCO were characterized, and found to be dependent on both ionic strength and the presence of free Cu(II) in solution. Further differential scanning calorimetry experiments performed at high ionic strength support a two-step model of BsSCO and Cu(II) binding. The implications of this model for the BsSCO-Cu(II) interaction are presented in relation to the mechanism of interaction between SCO and the CuA site of cytochrome c oxidase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Current data suggest that physiologic doses of vitamin B-6 have no significant homocysteine-lowering effect. It is possible that an effect of vitamin B-6 was missed in previous trials because of a much greater effect of folic acid, vitamin B-12, or both. OBJECTIVE: The aim of this study was to investigate the effect of low-dose vitamin B-6 supplementation on fasting total homocysteine (tHcy) concentrations in healthy elderly persons who were made replete with folate and riboflavin. DESIGN: Twenty-two healthy elderly persons aged 63-80 y were supplemented with a low dose of vitamin B-6 (1.6 mg/d) for 12 wk in a randomized, double-blind, placebo-controlled trial after repletion with folic acid (400 microg/d for 6 wk) and riboflavin (1.6 mg/d for 18 wk); none of the subjects had a vitamin B-12 deficiency. RESULTS: Folic acid supplementation lowered fasting tHcy by 19.6% (P

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study examined the effect of exogenous benzo[ a ]pyrene (BaP), an important constituent of cigarette smoke, on cultured bovine retinal pigment epithelial (RPE) cells. Evidence is presented for its metabolic conversion into benzo[ a ]pyrene diol epoxide (BPDE) and the consequent formation of potentially cytotoxic nucleobase adducts in DNA. Cultured RPE cells were treated with BaP at concentrations in the range of 0–100 µm. The presence of BaP was found to cause inhibition of cell growth and replication. BaP induced the expression of a phase I drug metabolizing enzyme which was identified as cytochrome P450 1A1 (CYP 1A1) by RT–PCR and by Western blotting. Coincident with the increased expression of CYP 1A1, covalent adducts between the mutagenic metabolite BPDE and DNA could be detected within RPE cells by immunocytochemical staining. Additional support for their formation was afforded by nuclease P1 enhanced 32P-postlabelling assays on cellular DNA. Single-cell gel electrophoresis (comet) assays showed that exposure of RPE cells to BaP rendered them markedly more susceptible to DNA damage induced by broad band UVB or blue light laser irradiation. In the case of UVB, this is consistent with the photosensitization of DNA cleavage by nucleobase adducts of BPDE. Collectively, these findings imply that BaP has a significant impact on RPE cell pathophysiology and suggest mechanisms whereby exposure to cigarette smoke might cause RPE dysfunction and cell death, thus possibly contributing to degenerative disorders of the retina.