983 resultados para beam theory
Resumo:
Based on a method proposed by Reddy and Daum, the equations governing the steady inviscid nonreacting gasdynamic laser (GDL) flow in a supersonic nozzle are reduced to a universal form so that the solutions depend on a single parameter which combines all the other parameters of the problem. Solutions are obtained for a sample case of available data and compared with existing results to validate the present approach. Also, similar solutions for a sample case are presented.
Resumo:
A simple technique for the measurement of the beam shape parameters of pulsed lasers, with just a single pulse of the laser is described. It involves the use of several beam dividers inclined at very small angles to the beam axis, reflecting the beam back to a screen or a phosphor placed near the exit of the laser. The reflected images are then photographed by a camera to yield the beam parameters.
Resumo:
The Winkler spring model is the most convenient representation of soil support in the domain of linear elasticity for framed structure-soil interaction analyses. The closeness of the analytical results obtained using this model with those corresponding to the elastic half-space continuum has been investigated in the past for foundation beams. The findings, however, are not applicable to framed structures founded on beam or strip footings. Moreover, the past investigations employ the concept of characteristic length which does not adequately account for the stiffness contribution of the superstructure. A framed structure on beam foundation can be described parametrically by the ratios of stiffnesses of superstructure and foundation beams to that of soil. For a practical range of soil allowable pressures, the ranges of these relative stiffness ratios have been established. The present study examines the variation between interactive analyses based on Winkler springs with those using the half-space continuum over these ranges of relative stiffness ratios. The findings enable the analyst to undertake a Winkler spring-based-interaction analysis with knowledge of the likely variation of values with those derived for the more computation-intensive half-space continuum.
Resumo:
The free vibrational characteristics of a beam-column, which is having randomly varying Young's modulus and mass density and subjected to randomly distributed axial loading is analysed. The material property fluctuations and axial loadings are considered to constitute independent one-dimensional, uni-variate, homogeneous real, spatially distributed stochastic fields. Hamilton's principle is used to formulate the problem using stochastic FEM. Vibration frequencies and mode shapes are analysed for their statistical descriptions. A numerical example is shown.
Resumo:
A BEM formulation to obtain the inelastic response of R.C. Beam-Column joints subjected to sinusoidal loading along the boundary is presented. The equations of motion are written along with kinematical and constitutive equations. The dynamic reciprocal theorem is presented and the temporal dependence is removed by assuming steady state response.
Resumo:
A microscopic study of the non‐Markovian (or memory) effects on the collective orientational relaxation in a dense dipolar liquid is carried out by using an extended hydrodynamic approach which provides a reliable description of the dynamical processes occuring at the molecular length scales. Detailed calculations of the wave‐vector dependent orientational correlation functions are presented. The memory effects are found to play an important role; the non‐Markovian results differ considerably from that of the Markovian theory. In particular, a slow long‐time decay of the longitudinal orientational correlation function is observed for dense liquids which becomes weaker in the presence of a sizeable translational contribution to the collective orientational relaxation. This slow decay can be attributed to the intermolecular correlations at the molecular length scales. The longitudinal component of the orientational correlation function becomes oscillatory in the underdamped limit of momenta relaxations and the frequency dependence of the friction reduce the frictional resistance on the collective excitations (commonly known as dipolarons) to make them long lived. The theory predicts that these dipolarons can, therefore, be important in chemical relaxation processes, in contradiction to the claims of some earlier theoretical studies.
Resumo:
A molecular theory of dielectric relaxation in a dense binary dipolar liquid is presented. The theory takes into account the effects of intra- and interspecies intermolecular interactions. It is shown that the relaxation is, in general, nonexponential. In certain limits, we recover the biexponential form traditionally used to analyze the experimental data of dielectric relaxation in a binary mixture. However, the relaxation times are widely different from the prediction of the noninteracting rotational diffusion model of Debye for a binary system. Detailed numerical evaluation of the frequency-dependent dielectric function epsilon-(omega) is carried out by using the known analytic solution of the mean spherical approximation (MSA) model for the two-particle direct correlation function for a polar mixture. A microscopic expression for both wave vector (k) and frequency (omega) dependent dielectric function, epsilon-(k,omega), of a binary mixture is also presented. The theoretical predictions on epsilon-(omega) (= epsilon-(k = 0, omega)) have been compared with the available experimental results. In particular, the present theory offers a molecular explanation of the phenomenon of fusing of the two relaxation channels of the neat liquids, observed by Schallamach many years ago.
Resumo:
A numerical solution for the transient temperature distribution in a cylindrical disc heated on its top surface by a circular source is presented. A finite difference form of the governing equations is solved by the Alternating Direction Implicit (ADI) time marching scheme. This solution has direct applications in analyzing transient electron beam heating of target materials as encountered in the prebreakdown current enhancement and consequent breakdown in high voltage vacuum gaps stressed by alternating and pulsed voltages. The solution provides an estimate of the temperature for pulsed electron beam heating and the size of thermally activated microparticles originating from anode hot spots. The calculated results for a typical 45kV (a.c.) electron beam of radius 2.5 micron indicate that the temperature of such spots can reach melting point and could give rise to microparticles which could initiate breakdown.
Resumo:
Fujikawa's method of evaluating the supercurrent and the superconformal current anomalies, using the heat-kernel regularization scheme, is extended to theories with gauge invariance, in particular, to the off-shell N=1 supersymmetric Yang-Mills (SSYM) theory. The Jacobians of supersymmetry and superconformal transformations are finite. Although the gauge-fixing term is not supersymmetric and the regularization scheme is not manifestly supersymmetric, we find that the regularized Jacobians are gauge invariant and finite and they can be expressed in such a way that there is no one-loop supercurrent anomaly for the N=1 SSYM theory. The superconformal anomaly is nonzero and the anomaly agrees with a similar result obtained using other methods.
Resumo:
We have derived explicitly, the large scale distribution of quantum Ohmic resistance of a disordered one-dimensional conductor. We show that in the thermodynamic limit this distribution is characterized by two independent parameters for strong disorder, leading to a two-parameter scaling theory of localization. Only in the limit of weak disorder we recover single parameter scaling, consistent with existing theoretical treatments.
Resumo:
The Integrated Force Method (IFM) is a novel matrix formulation developed for analyzing the civil, mechanical and aerospace engineering structures. In this method all independent/internal forces are treated as unknown variables which are calculated by simultaneously imposing equations of equilibrium and compatibility conditions. This paper presents a new 12-node serendipity quadrilateral plate bending element MQP12 for the analysis of thin and thick plate problems using IFM. The Mindlin-Reissner plate theory has been employed in the formulation which accounts the effect of shear deformation. The performance of this new element with respect to accuracy and convergence is studied by analyzing many standard benchmark plate bending problems. The results of the new element MQP12 are compared with those of displacement-based 12-node plate bending elements available in the literature. The results are also compared with exact solutions. The new element MQP12 is free from shear locking and performs excellent for both thin and moderately thick plate bending situations.
Resumo:
This paper presents a study on the uncertainty in material parameters of wave propagation responses in metallic beam structures. Special effort is made to quantify the effect of uncertainty in the wave propagation responses at high frequencies. Both the modulus of elasticity and the density are considered uncertain. The analysis is performed using a Monte Carlo simulation (MCS) under the spectral finite element method (SEM). The randomness in the material properties is characterized by three different distributions, the normal, Weibull and extreme value distributions. Their effect on wave propagation in beams is investigated. The numerical study shows that the CPU time taken for MCS under SEM is about 48 times less than for MCS under a conventional one-dimensional finite element environment for 50 kHz loading. The numerical results presented investigate effects of material uncertainties on high frequency modes. A study is performed on the usage of different beam theories and their uncertain responses due to dynamic impulse load. These studies show that even for a small coefficient of variation, significant changes in the above parameters are noticed. A number of interesting results are presented, showing the true effects of uncertainty response due to dynamic impulse load.
Resumo:
The modern subject is what we can call a self-subjecting individual. This is someone in whose inner reality has been implanted a more permanent governability, a governability that works inside the agent. Michel Foucault s genealogy of the modern subject is the history of its constitution by power practices. By a flight of imagination, suppose that this history is not an evolving social structure or cultural phenomenon, but one of those insects (moth) whose life cycle consists of three stages or moments: crawling larva, encapsulated pupa, and flying adult. Foucault s history of power-practices presents the same kind of miracle of total metamorphosis. The main forces in the general field of power can be apprehended through a generalisation of three rationalities functioning side-by-side in the plurality of different practices of power: domination, normalisation and the law. Domination is a force functioning by the rationality of reason of state: the state s essence is power, power is firm domination over people, and people are the state s resource by which the state s strength is measured. Normalisation is a force that takes hold on people from the inside of society: it imposes society s own reality its empirical verity as a norm on people through silently working jurisdictional operations that exclude pathological individuals too far from the average of the population as a whole. The law is a counterforce to both domination and normalisation. Accounting for elements of legal practice as omnihistorical is not possible without a view of the general field of power. Without this view, and only in terms of the operations and tactical manoeuvres of the practice of law, nothing of the kind can be seen: the only thing that practice manifests is constant change itself. However, the backdrop of law s tacit dimension that is, the power-relations between law, domination and normalisation allows one to see more. In the general field of power, the function of law is exactly to maintain the constant possibility of change. Whereas domination and normalisation would stabilise society, the law makes it move. The European individual has a reality as a problem. What is a problem? A problem is something that allows entry into the field of thought, said Foucault. To be a problem, it is necessary for certain number of factors to have made it uncertain, to have made it lose familiarity, or to have provoked a certain number of difficulties around it . Entering the field of thought through problematisations of the European individual human forms, power and knowledge one is able to glimpse the historical backgrounds of our present being. These were produced, and then again buried, in intersections between practices of power and games of truth. In the problem of the European individual one has suitable circumstances that bring to light forces that have passed through the individual through centuries.