914 resultados para amorphous
Resumo:
The indwelling urethral catheter has an important role for patients with urinary retention, bladder obstruction, neurological damage and other diseases. Urine contains minerals which precipitate in alkaline pH, crystallize and block the urological catheter. The crystallization of the ionic components of urine occurs in the presence of urease, an enzyme produced by Proteus mirabilis. This bacterium adheres to inanimate surfaces and forms biofilms. The aim of this study was to investigate the formation of crystalline biofilm on the luminal surface of siliconized latex catheters by means of scanning electron microscope, after channeling artificial urine infected with Proteus mirabilis. The experiment was performed in vitro using a dynamic flow system. The artificial urine compounds were salts of calcium, magnesium, phosphates, urea and egg albumin, and it was infected with Proteus mirabilis ATCC 25933. The urine flow was stopped after crystallization of the ionic components. Crystallization was observed after alkalinization of urine. Scanning electron microscopy showed the presence of crystals and morphologies typical of bacilli embedded in an amorphous mass on the internal lumen of the catheter. The present study showed that catheter encrustation may limit the use of long-term indwelling catheter. © SBEB - Sociedade Brasileira de Engenharia Biomédica.
Resumo:
The aim of this study was to evaluate effect of bleaching agents on sound enamel (SE) and enamel with early artificial caries lesions (CL) using confocal laser scanning microscopy (CLSM). Eighty blocks (4 × 5 × 5 mm) of bovine enamel were used and half of them were submitted to a pH cycling model to induce CL. Eight experimental groups were obtained from the treatments and mineralization level of the enamel (SE or CL) (n=10). SE groups: G1 - unbleached (control); G2 - 4% hydrogen peroxide (4 HP); G3 - 4 HP containing 0.05% Ca (Ca); G4 - 7.5% hydrogen peroxide (7.5 HP) containing amorphous calcium phosphate (ACP). CL groups: G5 - unbleached; G6 - 4 HP; G7 - 4 HP containing Ca; G8 - 7.5 HP ACP. G2, G3, G6, G7 were treated with the bleaching agents for 8 h/day during 14 days, while G4 and G8 were exposed to the bleaching agents for 30 min twice a day during 14 days. The enamel blocks were stained with 0.1 mM rhodamine B solution and the demineralization was quantified using fluorescence intensity detected by CLSM. Data were analyzed using ANOVA and Fisher's tests (α=0.05). For the SE groups, the bleaching treatments increased significantly the demineralization area when compared with the unbleached group. In the CL groups, no statistically significant difference was observed (p>0.05). The addition of ACP or Ca in the composition of the whitening products did not overcome the effects caused by bleaching treatments on SE and neither was able to promote remineralization of CL.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The magnetic characteristics of Ga1-xMnxN nanocrystalline films (x = 0.08 and x = 0.18), grown by reactive sputtering onto amorphous silica substrates (a-SiO2), are shown. Further than the dominant paramagnetic-like behaviour, both field- and temperature-dependent magnetization curves presented some particular features indicating the presence of secondary magnetic phases. A simple and qualitative analysis based on the Brillouin function assisted the interpretation of these secondary magnetic contributions, which were tentatively attributed to antiferromagnetic and ferromagnetic phases. © 2012 Elsevier Masson SAS. All rights reserved.
Resumo:
The results of the histopathological analyses after the implantation of highly crystalline PVA microspheres in subcutaneous tissues of Wistar rats are here in reported. Three different groups of PVA microparticles were systematically studied: highly crystalline, amorphous, and commercial ones. In addition to these experiments, complementary analyses of architectural complexity were performed using fractal dimension (FD), and Shannon's entropy (SE) concepts. The highly crystalline microspheres induced inflammatory reactions similar to the ones observed for the commercial ones, while the inflammatory reactions caused by the amorphous ones were less intense. Statistical analyses of the subcutaneous tissues of Wistar rats implanted with the highly crystalline microspheres resulted in FD and SE values significantly higher than the statistical parameters observed for the amorphous ones. The FD and SE parameters obtained for the subcutaneous tissues of Wistar rats implanted with crystalline and commercial microparticles were statistically similar. Briefly, the results indicated that the new highly crystalline microspheres had biocompatible behavior comparable to the commercial ones. In addition, statistical tools such as FD and SE analyses when combined with histopathological analyses can be useful tools to investigate the architectural complexity tissues caused by complex inflammatory reactions. © 2012 WILEY PERIODICALS, INC.
Resumo:
Purpose: To develop and characterize solid dispersions of praziquantel (PZQ) with sodium starch glycolate (SSG) for enhanced drug solubility. Methods: PZQ solid dispersion (SD) was prepared using co-precipitation method by solvent evaporation. The ratios of PZQ to SSG were 2:1, 1:1, 1:2, 1:3 (w/w). PZQ solubility was evaluated in purified water, and PZQ dissolution test was carried out in 0.1N HCl. Structural characterization of the dispersions was accomplished by x-ray diffraction (XRD) and infrared spectroscopy (FTIR) while the external morphology of the SDs, SSG and PZQ were studied by scanning electron microscopy (SEM). Mucoadhesion properties of the SD (1:3) and SSG, on mucin disks were examined using texture profile analysis. Results: The highest solubility was obtained with 1:3 solid dispersion, with PZQ solubility of 97.31 %, which is 3.65-fold greater than the solubility of pure PZQ and physical misture (PM, 1:3). XRD results indicate a reduction in PZQ crystallinity while infrared spectra showed that the functional groups of PZQ and SSG were preserved. SEM showed that the physical structure of PZQ was modified from crystalline to amorphous. The amount of PZQ in PM and SD (1:3) that dissolved in 60 min was 70 and 88 %, respectively, and these values increased to 76 and 96 %, respectively. The solid dispersion reduced the mucoadhesive property of the glycolate. Conclusion: Solid dispersion formulation using SSG is a good alternative approach for increasing the dissolution rate of PZQ. © Pharmacotherapy Group, Faculty of Pharmacy, University of Benin, Benin City, 300001 Nigeria. All rights reserved.
Resumo:
Application of nanoscale materials in photovoltaic and photocatalysis devices and photosensors are dramatically affected by surface morphology of nanoparticles, which plays a fundamental role in the understanding of the physical and chemical properties of nanoscale materials. Zinc oxide nanoparticles with an average size of 20 nm were obtained by the use of a sonochemical technique. X-ray diffraction (XRD) associated to Rietveld refinements and transmission electron microscopy (TEM) were used to study structural and morphological characteristics of the samples. An amorphous shell approximately 10 nm thick was observed in the ultrasonically treated sample, and a large reduction in particle size and changes in the lattice parameters were also observed. © 2012 Elsevier B.V. All rights reserved.
Resumo:
This study investigated the effects of the morphology and physicochemical properties of calcium phosphate (CaP) nanoparticles on osteogenesis. Two types of CaP nanoparticles were compared, namely amorphous calcium phosphate (ACP) nano-spheres (diameter: 9-13 nm) and poorly crystalline apatite (PCA) nano-needles (30-50 nm x 2-4 nm) that closely resemble bone apatite. CaP particles were spin-coated onto titanium discs and implants; they were evaluated in cultured mouse calvarial osteoblasts, as well as after implantation in rabbit femurs. A significant dependence of CaP coatings was observed in osteoblast-related gene expression (Runx2, Col1a1 and Spp1). Specifically, the PCA group presented an up-regulation of the osteospecific genes, while the ACP group suppressed the Runx2 and Col1a1 expression when compared to blank titanium substrates. Both the ACP and PCA groups presented a more than three-fold increase of calcium deposition, as suggested by Alizarin red staining. The removal torque results implied a slight tendency in favour of the PCA group. Different forms of CaP nanostructures presented different biologic differences; the obtained information can be used to optimize surface coatings on biomaterials. © 2013 IOP Publishing Ltd.
Resumo:
Aluminum acetylacetonate has been reported as a precursor for the deposition of alumina films using different approaches. In this work, alumina-containing films were prepared by plasma sputtering this compound, spread directly on the powered lowermost electrode of a reactor, while grounding the substrates mounted on the topmost electrode. Radiofrequency power (13.56 MHz) was used to excite the plasma from argon atmosphere at a working pressure of 11 Pa. The effect of the plasma excitation power on the properties of the resulting films was studied. Film thickness and hardness were measured by profilometry and nanoindentation, respectively. The molecular structure and chemical composition of the layers were analyzed by Fourier transform infrared spectroscopy and energy dispersive spectroscopy. Surface micrographs, obtained by scanning electron microscopy, allowed the determination of the sample morphology. Grazing incidence X-ray diffraction was employed to determine the structure of the films. Amorphous organic layers were deposited with thicknesses of up to 7 μm and hardness of around 1.0 GPa. The films were composed by aluminum, carbon, oxygen and hydrogen, their proportions being strongly dependent on the power used to excite the plasma. A uniform surface was obtained for low-power depositions, but particulates and cracks appeared in the high-power prepared materials. The presence of different proportions of aluminum oxide in the coatings is ascribed to the different activations promoted in the metalorganic molecule once in the plasma phase. Copyright © 2013 John Wiley & Sons, Ltd. Copyright © 2013 John Wiley & Sons, Ltd.
Resumo:
The Archaeological Dark Earth (ADE) soils are characterized by its high fertility, dark color, and presence of pottery fragments. Regarding the formation of ADE, the most widely accepted hypothesis is that anthropogenic processes involving pre-Columbian populations made them. The purpose of this study is to characterize ADE units located in the Southern Amazon Region, in the cities of Apuí and Manicoré. Seven ADE sites were selected, trenches opened and the soil profiles characterized morphologically. Then, samples of each horizon were collected for analyses of the following physical and chemical properties: particle size, water-dispersible clay, flocculation, soil bulk density, particle density, total porosity, pH in water and KCl solutions, Ca2+, Mg2+, K+, Al3+, available P, H+Al, and organic C. Also, total oxides, free oxides and amorphous forms were analyzed. The texture of the anthropic A horizon ranged from sandy loam to clay loam. The pottery fragments and lithic material were found in similar quantities and at similar depths in the A horizons of the studied soil profiles, suggesting some similarity between the anthropogenic factors of formation. The anthropic horizons of profiles P3, P4, and P7 had a eutrophic character and high to very high levels of available phosphorus, compared to P1, P2, P5, and P6, indicating the heterogeneity of the ADEs.
Resumo:
Titanium and its alloys are widely used as biomaterials due to their mechanical, chemical and biological properties. To enhance the biocompatibility of titanium alloys, various surface treatments have been proposed. In particular, the formation of titanium oxide nanotubes layers has been extensively examined. Among the various materials for implants, calcium phosphates and hydroxyapatite are widely used clinically. In this work, titanium nanotubes were fabricated on the surface of Ti-7.5Mo alloy by anodization. The samples were anodized for 20 V in an electrolyte containing glycerol in combination with ammonium fluoride (NH4F, 0.25%), and the anodization time was 24 h. After being anodized, specimens were heat treated at 450 °C and 600°C for 1 h to crystallize the amorphous TiO2 nanotubes and then treated with NaOH solution to make them bioactive, to induce growth of calcium phosphate in a simulated body fluid. Surface morphology and coating chemistry were obtained respectively using, field-emission scanning electron microscopy (FEG-SEM), AFM and X-ray diffraction (XRD). It was shown that the presence of titanium nanotubes induces the growth of a sodium titanate nanolayer. During the subsequent invitro immersion in a simulated body fluid, the sodium titanate nanolayer induced the nucleation and growth of nano-dimensioned calcium phosphate. It was possible to observe the formation of TiO2 nanotubes on the surface of Ti-7.5Mo. Calcium phosphate coating was greater in the samples with larger nanotube diameter. These findings represent a simple surface treatment for Ti-7.5Mo alloy that has high potential for biomedical applications. © (2013) Trans Tech Publications, Switzerland.
Resumo:
The XAS/WAXS time-resolved method was applied for unraveling the complex mechanisms arising from the evolution of several metastable intermediates during the degradation of chlorine layered double hydroxide (LDH) upon heating to 450 °C, i.e., Zn2Al(OH)6·nH2O, ZnCuAl(OH)6·nH2O, Zn2Al 0.75Fe0.25(OH)6·nH2O, and ZnCuAl0.5Fe0.5(OH)6·nH2O. After a contraction of the interlamellar distance, attributed to the loss of intracrystalline water molecules, this distance experiences an expansion (T > 175-225 °C) before the breakdown of the lamellar framework around 275-295 °C. Amorphous prenucleus clusters with crystallo-chemical local order of zinc-based oxide and zinc-based spinel phases, and if any of copper-based oxide, are formed at T > 175-225 °C well before the loss of stacking of LDH layers. This distance expansion has been ascribed to the migration of Zn II from octahedral layers to tetrahedral sites in the interlayer space, nucleating the nano-ZnO or nano-ZnM2O4 (M = Al or Fe) amorphous prenuclei. The transformation of these nano-ZnO clusters toward ZnO crystallites proceeds through an agglomeration process occurring before the complete loss of layer stacking for Zn2Al(OH)6· nH2O and Zn2Al0.75Fe0.25(OH) 6·nH2O. For ZnCuAl(OH)6·nH 2O and ZnCuAl0.5Fe0.5(OH)6· nH2O, a cooperative effect between the formation of nano-CuO and nano-ZnAl2O4 amorphous clusters facilitates the topochemical transformation of LDH to spinel due to the contribution of octahedral CuII vacancy to ZnII diffusion. © 2013 American Chemical Society.
Resumo:
The effect of amorphous (am-), monoclinic (m-), and tetragonal (t-) ZrO2 phase on the physicochemical and catalytic properties of supported Cu catalysts for ethanol conversion was studied. The electronic parameters of Cu/ZrO2 were determined by in situ XAS, and the surface properties of Cu/ZrO2 were defined by XPS and DRIFTS of CO-adsorbed. The results demonstrated that the kind of ZrO2 phase plays a key role in the determination of structure and catalytic properties of Cu/ZrO 2 catalysts predetermined by the interface at Cu/ZrO2. The electron transfer between support and Cu surface, caused by the oxygen vacancies at m-ZrO2 and am-ZrO2, is responsible for the active sites for acetaldehyde and ethyl acetate formation. The highest selectivity to ethyl acetate for Cu/m-ZrO2 catalyst up to 513 K was caused by the optimal ratio of Cu0/Cu+ species and the high density of basic sites (O2-) associated with the oxygen mobility from the bulk m-ZrO2. © 2013 Elsevier Inc. All rights reserved.
Resumo:
The unique properties of ceramic foams enable their use in a variety of applications. This work investigated the effects of different parameters on the production of zirconia ceramic foam using the sol-gel process associated with liquid foam templates. Evaluation was made of the influence of the thermal treatment temperature on the porous and crystalline characteristics of foams manufactured using different amounts of sodium dodecylsulfate (SDS) surfactant. A maximum pore volume, with high porosity (94%) and a bimodal pore size distribution, was observed for the ceramic foam produced with 10% SDS. Macropores, with an average size of around 30 μm, were obtained irrespective of the SDS amount, while the average size of the supermesopores increased systematically as the SDS amount was increased up to 10%, after which it decreased. X-ray diffraction analyses showed that the sample treated at 500 °C was amorphous, while crystallization into a tetragonal metastable phase occurred at 600 °C due to the presence of sulfate groups in the zirconia structure. At 800 and 1000 °C the monoclinic phase was observed, which is thermodynamically stable at these temperatures. © 2013 by the authors; licensee MDPI, Basel, Switzerland.
Resumo:
The influence of current density, at the interval 5-100 mA cm-2, on the structural and magnetic properties of electrodeposited (Co 100-xNix)100-yWy alloys (x = 23-33.5 at. % Ni, y = 1.7-7.3 at. % W) was studied from a glycine-containing bath. W-content decreases with the increase of the current density magnitude. X-ray data have shown stabilization of hexagonal close packed, face centered cubic or a mixture of these structures by modulating the applied cathodic current density, for values lower than 50 mA cm-2. Two structural phase transitions were observed: one from hexagonal close packed to face centered cubic structural transition occurring for a current density of 20 mA cm -2, and another one, from cubic crystalline phase to amorphous state, which happens for values higher than 50 mA cm-2. These structural phase transitions seem to be associated with the W-content as well as average crystalline grain sizes that reduce with increasing the current density value. The grain size effect may explain the face centered cubic stabilization in Co-rich CoNiW alloys, which was initially assumed to be basically due to H-adsorption/incorporation. Magnetic properties of Co-rich CoNiW alloys are strongly modified by the current density value; as a result of the changes on the W-content and their structural properties© 2013 Elsevier B.V. All rights reserved.