918 resultados para acicular particles
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We analyze free elementary particles with a rest mass m and total energy E
Resumo:
Maintaining the volume of the alveolar process after extraction can be achieved by immediate implant placement and guided bone regeneration, with or without the use of biomaterials. The authors present a case report with a 10 years follow-up, rehabilitation using osseointegrated implants in the extraction area and maintenance of the volume of the alveolar process with autogenous cortical bone shavings.
Resumo:
Ordered mesoporous, highly luminescent SiO2 particles have been synthesized by spray pyrolysis from solutions containing tetraethylorthosilicate (TEOS), Eu(NO3)3.6H2O, and cetyltrimethylammonium bromide (CTAB) as structure-directing agents. The 1,10-phenantroline (Phen) molecules were coordinated in a post-synthesis step by a simple wet impregnation method. In addition, other matrices were also prepared by the encapsulation of europium complex Eu(fod)3 (where fod = 6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octanedionato) into mesoporous silica, and then the Phen molecules were encapsulated by different impregnation steps, after which the luminescence properties were investigated. The obtained materials were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder x-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. Powders with polydisperse spherical grains were obtained, displaying an ordered hexagonal array of mesochannels. Luminescence results revealed that Phen molecules had been successfully coordinated as an additional ligand in the Eu(fod)3 complex into the channels of the mesoporous particles without disrupting the structure.
Resumo:
The intrinsically relativistic problem of spinless particles subject to a general mixing of vector and scalar kink- like potentials (similar to tanh gamma x) is investigated. The problem is mapped into the exactly solvable Sturm - Liouville problem with the Rosen - Morse potential and exact bounded solutions for particles and antiparticles are found. The behavior of the spectrum is discussed in some detail. An apparent paradox concerning the uncertainty principle is solved by recurring to the concept of effective Compton wavelength.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper describes the first results of polycyclic aromatic hydrocarbons (PAHs) and spheroidal carbonaceous particles (SCPs) in sediment cores of Admiralty Bay, Antarctica. These markers were used to assess the local input of anthropogenic materials (particulate and organic compounds) as a result of the influence of human occupation in a sub-Antarctic region and a possible long-range atmospheric transport of combustion products from sources in South America. The highest SCPs and PAHs concentrations were observed during the last 30 years, when three research stations were built in the area and industrial activities in South America increased. The concentrations of SCPs and PAHs were much lower than those of other regions in the northern hemisphere and other reported data for the southern hemisphere. The PAH isomer ratios showed that the major sources of PAHs are fossil fuels/petroleum, biomass combustion and sewage contribution generally close to the Brazilian scientific station. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Background: The aim of this study was to compare the potential of bioactive glass particles of different size ranges to affect bone formation in periodontal defects, using the guided tissue regeneration model in dogs. Methods: In six dogs, 2-wall intrabony periodontal defects were surgically created and chronified on the mesial surfaces of mandibular third premolars and first molars bilaterally. After 1 month, each defect was randomly assigned to treatment with bioabsorbable membrane in association with bioactive glass with particle sizes between 300 and 355 mu m (group 1) or between 90 and 710 mu m (group 2), membrane alone (group 3), or negative control (group 4). The dogs were sacrificed 12 weeks after surgeries, and histomorphometric measurements were made of the areas of newly formed bone, new mineralized bone, and bioactive glass particle remnants. Results: With regard to the area of bioactive glass particle remnants, there was a statistically significant difference between groups 1 and 2, favoring group 1. There were greater areas of mineralized bone in groups 1 and 2 compared to groups 3 and 4 (P<0.05). Conclusion: The bioactive glass particles of small size range underwent faster resorption and substitution by new bone than the larger particles, and the use of bioactive glass particles favored the formation of mineralized bone. J Periodontol 2009;80:808-815.
Resumo:
We studied the low energy motion of particles in the general covariant. version of Horava-Lifshitz gravity proposed by Horava and Melby-Thompson. Using a scalar field coupled to gravity according to the minimal substitution recipe proposed by da Silva and taking the geometrical optics limit, we could write an effective relativistic metric for a general solution. As a result, we discovered that the equivalence principle is not in general recovered at low energies, unless the spatial Laplacian of A vanishes. Finally, we analyzed the motion on the spherical symmetric solution proposed by Horava and Melby-Thompson, where we could find its effective line element and compute spin-0 geodesics. Using standard methods we have shown that such an effective metric cannot reproduce Newton's gravity law even in the weak gravitational field approximation. (C) 2011 Elsevier B.V All rights reserved.
Resumo:
This paper reports results for directed flow v(1) and elliptic flow v(2) of charged particles in Cu + Cu collisions at root s(NN) = 22.4 GeV at the Relativistic Heavy Ion Collider. The measurements are for the 0-60% most central collisions, using charged particles observed in the STAR detector. Our measurements extend to 22.4-GeV Cu + Cu collisions the prior observation that v1 is independent of the system size at 62.4 and 200 GeV and also extend the scaling of v(1) with eta/y(beam) to this system. The measured v(2)(p(T)) in Cu + Cu collisions is similar for root s(NN) throughout the range 22.4 to 200 GeV. We also report a comparison with results from transport model (ultrarelativistic quantum molecular dynamics and multiphase transport model) calculations. The model results do not agree quantitatively with the measured v(1)(eta), v(2)(p(T)), and v(2)(eta).
Resumo:
This article reports on the influence of the magnetization damping on dynamic hysteresis loops in single-domain particles with uniaxial anisotropy. The approach is based on the Neel-Brown theory and the hierarchy of differential recurrence relations, which follow from averaging over the realizations of the stochastic Landau-Lifshitz equation. A new method of solution is proposed, where the resulting system of differential equations is solved directly using optimized algorithms to explore its sparsity. All parameters involved in uniaxial systems are treated in detail, with particular attention given to the frequency dependence. It is shown that in the ferromagnetic resonance region, novel phenomena are observed for even moderately low values of the damping. The hysteresis loops assume remarkably unusual shapes, which are also followed by a pronounced reduction of their heights. Also demonstrated is that these features remain for randomly oriented ensembles and, moreover, are approximately independent of temperature and particle size. (C) 2012 American Institute of Physics. [doi:10.1063/1.3684629]
Resumo:
Fungi are disease-causing agents in plants and affect crops of economic importance. One control method is to induce resistance in the host by using biological control with hypovirulent phytopathogenic fungi. Here, we report the detection of a mycovirus in a strain of Colletotrichum gloeosporioides causing anthracnose of cashew tree. The strain C. gloeosporioides URM 4903 was isolated from a cashew tree (Anacardium occidentale) in Igarassu, PE, Brazil. After nucleic acid extraction and electrophoresis, the band corresponding to a possible double-stranded RNA (dsRNA) was purified by cellulose column chromatography. Nine extrachromosomal bands were obtained. Enzymatic digestion with DNAse I and Nuclease S1 had no effect on these bands, indicating their dsRNA nature. Transmission electron microscopic examination of extracts from this strain showed the presence of isometric particles (30-35 nm in diameter). These data strongly suggest the infection of this C. gloeosporioides strain by a dsRNA mycovirus. Once the hypovirulence of this strain is confirmed, the strain may be used for the biological control of cashew anthracnose.
Resumo:
On the basis of the full analytical solution of the overall unitary dynamics, the time evolution of entanglement is studied in a simple bipartite model system evolving unitarily from a pure initial state. The system consists of two particles in one spatial dimension bound by harmonic forces and having its free center of mass initially localized in space in a minimum uncertainty wavepacket. The existence of such initial states in which the bound particles are not entangled is discussed. Galilean invariance of the system ensures that the dynamics of entanglement between the two particles is independent of the wavepacket mean momentum. In fact, as shown, it is driven by the dispersive center of mass free dynamics, and evolves in a time scale that depends on the interparticle interaction in an essential way.
Resumo:
As a part of the AMAZE-08 campaign during the wet season in the rainforest of central Amazonia, an ultraviolet aerodynamic particle sizer (UV-APS) was operated for continuous measurements of fluorescent biological aerosol particles (FBAP). In the coarse particle size range (> 1 mu m) the campaign median and quartiles of FBAP number and mass concentration were 7.3x10(4) m(-3) (4.0-13.2x10(4) m(-3)) and 0.72 mu g m(-3) (0.42-1.19 mu g m(-3)), respectively, accounting for 24% (11-41%) of total particle number and 47% (25-65%) of total particle mass. During the five-week campaign in February-March 2008 the concentration of coarse-mode Saharan dust particles was highly variable. In contrast, FBAP concentrations remained fairly constant over the course of weeks and had a consistent daily pattern, peaking several hours before sunrise, suggesting observed FBAP was dominated by nocturnal spore emission. This conclusion was supported by the consistent FBAP number size distribution peaking at 2.3 mu m, also attributed to fungal spores and mixed biological particles by scanning electron microscopy (SEM), light microscopy and biochemical staining. A second primary biological aerosol particle (PBAP) mode between 0.5 and 1.0 mu m was also observed by SEM, but exhibited little fluorescence and no true fungal staining. This mode may have consisted of single bacterial cells, brochosomes, various fragments of biological material, and small Chromalveolata (Chromista) spores. Particles liquid-coated with mixed organic-inorganic material constituted a large fraction of observations, and these coatings contained salts likely from primary biological origin. We provide key support for the suggestion that real-time laser-induce fluorescence (LIF) techniques using 355 nm excitation provide size-resolved concentrations of FBAP as a lower limit for the atmospheric abundance of biological particles in a pristine environment. We also show some limitations of using the instrument for ambient monitoring of weakly fluorescent particles < 2 mu m. Our measurements confirm that primary biological particles, fungal spores in particular, are an important fraction of supermicron aerosol in the Amazon and that may contribute significantly to hydrological cycling, especially when coated by mixed inorganic material.
Resumo:
The fine particles serving as cloud condensation nuclei in pristine Amazonian rainforest air consist mostly of secondary organic aerosol. Their origin is enigmatic, however, because new particle formation in the atmosphere is not observed. Here, we show that the growth of organic aerosol particles can be initiated by potassium-salt-rich particles emitted by biota in the rainforest. These particles act as seeds for the condensation of low- or semi-volatile organic compounds from the atmospheric gas phase or multiphase oxidation of isoprene and terpenes. Our findings suggest that the primary emission of biogenic salt particles directly influences the number concentration of cloud condensation nuclei and affects the microphysics of cloud formation and precipitation over the rainforest.