946 resultados para Water cycle
Resumo:
Road safety barriers are used to redirect traffic at roadside work-zones. When filled with water, these barriers are able to withstand low to moderate impact speeds up to 50kmh-1. Despite this feature, there are challenges when using portable water-filled barriers (PWFBs) such as large lateral displacements as well as tearing and breakage during impact, especially at higher speeds. In this study, the authors explore the use of composite action to enhance the crashworthiness of PWFBs and enable their use at higher speeds. Initially, we investigated the energy absorption capability of water in PWFB. Then, we considered the composite action of a PWFB with the introduction of a steel frame to evaluate its impact on performance. Findings of the study show that the initial height of impact must be lower than the free surface level of water in a PWFB for the water to provide significant crash energy absorption. In general, impact of a road barrier that is 80% filled is a good estimation. Furthermore, the addition of a composite structure greatly reduces the probability of tearing by decreasing the strain and impact energy transferred to the shell container. This allows the water to remain longer in the barrier to absorb energy via inertial displacement and sloshing response. Information from this research will aid in the design of next generation roadside safety structures aimed to increase safety on modern roadways.
Resumo:
Detailed mechanisms for the formation of hydroxyl or alkoxyl radicals in the reactions between tetrachloro-p-benzoquinone (TCBQ) and organic hydroperoxides are crucial for better understanding the potential carcinogenicity of polyhalogenated quinones. Herein, the mechanism of the reaction between TCBQ and H2O2 has been systematically investigated at the B3LYP/6-311++G** level of theory in the presence of different numbers of water molecules. We report that the whole reaction can easily take place with the assistance of explicit water molecules. Namely, an initial intermediate is formed first. After that, a nucleophilic attack of H2O2 onto TCBQ occurs, which results in the formation of a second intermediate that contains an OOH group. Subsequently, this second intermediate decomposes homolytically through cleavage of the O-O bond to produce a hydroxyl radical. Energy analyses suggest that the nucleophilic attack is the rate-determining step in the whole reaction. The participation of explicit water molecules promotes the reaction significantly, which can be used to explain the experimental phenomena. In addition, the effects of F, Br, and CH3 substituents on this reaction have also been studied.
Resumo:
This thesis introduced Bayesian statistics as an analysis technique to isolate resonant frequency information in in-cylinder pressure signals taken from internal combustion engines. Applications of these techniques are relevant to engine design (performance and noise), energy conservation (fuel consumption) and alternative fuel evaluation. The use of Bayesian statistics, over traditional techniques, allowed for a more in-depth investigation into previously difficult to isolate engine parameters on a cycle-by-cycle basis. Specifically, these techniques facilitated the determination of the start of pre-mixed and diffusion combustion and for the in-cylinder temperature profile to be resolved on individual consecutive engine cycles. Dr Bodisco further showed the utility of the Bayesian analysis techniques by applying them to in-cylinder pressure signals taken from a compression ignition engine run with fumigated ethanol.
Resumo:
With the advent of alternative fuels, such as biodiesels and related blends, it is important to develop an understanding of their effects on inter-cycle variability which, in turn, influences engine performance as well as its emission. Using four methanol trans-esterified biomass fuels of differing carbon chain length and degree of unsaturation, this paper provides insight into the effect that alternative fuels have on inter-cycle variability. The experiments were conducted with a heavy-duty Cummins, turbo-charged, common-rail compression ignition engine. Combustion performance is reported in terms of the following key in-cylinder parameters: indicated mean effective pressure (IMEP), net heat release rate (NHRR), standard deviation of variability (StDev), coefficient of variation (CoV), peak pressure, peak pressure timing and maximum rate of pressure rise. A link is also established between the cyclic variability and oxygen ratio, which is a good indicator of stoichiometry. The results show that the fatty acid structures did not have a significant effect on injection timing, injection duration, injection pressure, StDev of IMEP, or the timing of peak motoring and combustion pressures. However, a significant effect was noted on the premixed and diffusion combustion proportions, combustion peak pressure and maximum rate of pressure rise. Additionally, the boost pressure, IMEP and combustion peak pressure were found to be directly correlated to the oxygen ratio. The emission of particles positively correlates with oxygen content in the fuel as well as in the air-fuel mixture resulting in a higher total number of particles per unit of mass.
Resumo:
Portable water-filled road barriers (PWFB) are roadside structures placed on temporary construction zones to separate work site from moving traffic. Recent changes in governing standards require PWFB to adhere to strict compliance in terms of lateral displacement of the road barriers and vehicle redirectionality. Actual road safety barrier test can be very costly, thus researchers resort to Finite Element Analysis (FEA) in the initial designs phase prior to real vehicle test. There has been many research conducted on concrete barriers and flexible steel barriers using FEA, however not many is done pertaining to PWFB. This research probes a new method to model joint mechanism in PWFB. Two methods to model the joining mechanism are presented and discussed in relation to its practicality and accuracy to real work applications. Moreover, the study of the physical gap and mass of the barrier was investigated. Outcome from this research will benefit PWFB research and allow road barrier designers better knowledge in developing the next generation of road safety structures.
Resumo:
The current approach for protecting the receiving water environment from urban stormwater pollution is the adoption of structural measures commonly referred to as Water Sensitive Urban Design (WSUD). The treatment efficiency of WSUD measures closely depends on the design of the specific treatment units. As stormwater quality can be influenced by rainfall characteristics, the selection of appropriate rainfall events for treatment design is essential to ensure the effectiveness of WSUD systems. Based on extensive field investigation of four urban residential catchments and computer modelling, this paper details a technically robust approach for the selection of rainfall events for stormwater treatment design using a three-component model. The modelling outcomes indicate that selecting smaller average recurrence interval (ARI) events with high intensity-short duration as the threshold for the treatment system design is the most feasible since these events cumulatively generate a major portion of the annual pollutant load compared to the other types of rainfall events, despite producing a relatively smaller runoff volume. This implies that designs based on small and more frequent rainfall events rather than larger rainfall events would be appropriate in the context of efficiency in treatment performance, cost-effectiveness and possible savings in land area needed.
Resumo:
This thesis offered a step forward in the development of cheap and effective materials for water treatment. It described the modification of naturally abundant clay minerals with organic molecules, and used the modified clays as effective adsorbents for the removal of recalcitrant organic water pollutants. The outcome of the study greatly extended our understanding of the synthesis and characteristic properties of clay and modified clay minerals, provided optimistic evaluation of the modified clays for environmental remediation and offered potential utility for clay minerals in the industry and environment.
Resumo:
Accurately quantifying total freshwater storage methane release to atmosphere requires the spatial–temporal measurement of both diffusive and ebullitive emissions. Existing floating chamber techniques provide localised assessment of methane flux, however, significant errors can arise when weighting and extrapolation to the entire storage, particularly when ebullition is significant. An improved technique has been developed that compliments traditional chamber based experiments to quantify the storage-scale release of methane gas to atmosphere through ebullition using the measurements from an Optical Methane Detector (OMD) and a robotic boat. This provides a conservative estimate of the methane emission rate from ebullition along with the bubble volume distribution. It also georeferences the area of ebullition activity across entire storages at short temporal scales. An assessment on Little Nerang Dam in Queensland, Australia, demonstrated whole storage methane release significantly differed spatially and throughout the day. Total methane emission estimates showed a potential 32-fold variation in whole-of-dam rates depending on the measurement and extrapolation method and time of day used. The combined chamber and OMD technique showed that 1.8–7.0% of the surface area of Little Nerang Dam is accounting for up to 97% of total methane release to atmosphere throughout the day. Additionally, over 95% of detectable ebullition occurred in depths less than 12 m during the day and 6 m at night. This difference in spatial and temporal methane release rate distribution highlights the need to monitor significant regions of, if not the entire, water storage in order to provide an accurate estimate of ebullition rates and their contribution to annual methane emissions.
Resumo:
The Lake Wivenhoe Integrated Wireless Sensor Network is conceptually similar to traditional SCADA monitoring and control approaches. However, it is applied in an open system using wireless devices to monitor processes that affect water quality at both a high spatial and temporal frequency. This monitoring assists scientists to better understand drivers of key processes that influence water quality and provide the operators with an early warning system if below standard water enters the reservoir. Both of these aspects improve the safety and efficient delivery of drinking water to the end users.
Resumo:
Despite of significant contributions of urban road transport to global economy and society, it is one of the largest sources of local and global emission impact. In order to address the environmental concerns of urban road transport it is imperative to achieve a holistic understanding of contributory factors causing emissions which requires a complete look onto its whole life cycle. Previous studies were mainly based on segmental views which mostly studied environmental impacts of individual transport modes and very few considered impacts other than operational phase. This study develops an integrated life cycle inventory model for urban road transport emissions from a holistic modal perspective. Singapore case was used to demonstrate the model. Results show that total life cycle greenhouse gas emission from Singapore’s road transport sector is 7.8 million tons per year. The total amount of criteria air pollutants are also estimated in this study.
Resumo:
Monte Carlo simulations were used to investigate the relationship between the morphological characteristics and the diffusion tensor (DT) of partially aligned networks of cylindrical fibres. The orientation distributions of the fibres in each network were approximately uniform within a cone of a given semi-angle (θ0). This semi-angle was used to control the degree of alignment of the fibres. The networks studied ranged from perfectly aligned (θ0 = 0) to completely disordered (θ0 = 90°). Our results are qualitatively consistent with previous numerical models in the overall behaviour of the DT. However, we report a non-linear relationship between the fractional anisotropy (FA) of the DT and collagen volume fraction, which is different to the findings from previous work. We discuss our results in the context of diffusion tensor imaging of articular cartilage. We also demonstrate how appropriate diffusion models have the potential to enable quantitative interpretation of the experimentally measured diffusion-tensor FA in terms of collagen fibre alignment distributions.
Resumo:
The body of the thesis contained two separate elements which made an original contribution to fundamental understanding in the areas of photocatalysis, chemical synthesis and water treatment. Research on chemical reactions catalyzed by noble metal nanoparticles (such as gold) or surface complex grafted metal oxides which can be driven by sunlight at ambient temperature and the second element on radioactive cesium (137Cs+) cations and iodine (125I-) anions recovery by the unique structural features of titanate nanostructures for firmly capture and safe storage; the works has been all published in journals that are rated at the top of their respective fields.
Resumo:
The electrodeposition of silver from two ionic liquids, 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIm][BF4]) and N-butyl-N-methyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide ([C4mPyr][TFSI]), and an aqueous KNO3 solution on a glassy carbon electrode was undertaken. It was found by cyclic voltammetry that the electrodeposition of silver proceeds through nucleation–growth kinetics. Analysis of chronoamperometric data indicated that the nucleation–growth mechanism is instantaneous at all potentials in the case of [BMIm][BF4] and [C4mPyr][TFSI], and instantaneous at low overpotentials tending to progressive at high overpotentials for KNO3. Significantly, under ambient conditions, the silver electrodeposition mechanism changes to progressive nucleation and growth in [C4mPyr][TFSI], which is attributed to the uptake of atmospheric water in the IL. It was found that these differences in the growth mechanism impact significantly on the morphology of the resultant electrodeposit which is characterised ex situ by scanning electron microscopy and X-ray diffraction.
Resumo:
While participatory processes have become an important part of water planning, young people are a particularly vulnerable group in terms of potential marginalisation and exclusion from effective participation. Including the views of young people in water planning is not simply a matter of bringing them into existing processes. Instead, processes must be modified to accommodate their needs and ways of expressing their views. Without these adjustments young people may simply move from being kept outside the process to a situation where although they are formally included, their claims are not taken seriously and they are not treated with equal respect. In this paper we reflect on the success of the community advisory committee, formed to develop the Gold Coast Waterfuture Strategy, in integrating the views of young people into their deliberations. Using Young's communicative democracy we highlight the challenges and opportunities presented by this approach, as articulated by both the young people involved and the adult participants, and specifically consider the how the elements of greeting, rhetoric and narrative were reflected in the committee process.