996 resultados para Waste-handling unit
Resumo:
We examine the trajectories of the real unit labour costs (RULCs) in a selection of Eurozone economies. Strong asymmetries in the convergence process of the RULCs and its components —real wages, capital intensity, and technology— are uncovered through decomposition and cluster analyses. In the last three decades, the PIIGS (Portugal, Ireland, Italy, Greece, and Spain) succeeded in reducing their RULCs by more than their northern partners. With the exception of Ireland, however, technological progress was weak; it was through capital intensification that periphery economies gained efficiency and competitiveness. Cluster heterogeneity, and lack of robustness in cluster composition, is a reflection of the difficulties in achieving real convergence and, by extension, nominal convergence. We conclude by outlining technology as the key convergence factor, and call for a renewed attention to real convergence indicators to strengthen the process of European integration.
Resumo:
Actualmente, las necesidades de mejora en gestión de stocks y la mayor disponibilidad de sistemas automáticos, están haciendo que muchas empresas inviertan en técnicas modernas para almacenamiento y manipulación de productos. Esta inquietud también ha llegado a las farmacias, que de forma lenta pero firme se van apuntando a su robotización. Uno de los principales problemas a los que se enfrentan las farmacias es la pérdida de tiempo en la gestión y búsqueda de medicamentos, provocando situaciones negativas como las esperas, la falta de tiempo para una atención más personalizada y como consecuencia, la pérdida de clientes. Este inconveniente y la necesidad de mejora en la gestión de los stocks han hecho que aparezcan los Sistemas de dispensación automática de productos farmacéuticos. El dispensador automático facilita el trabajo del farmacéutico al automatizar la búsqueda de la medicina requerida, aumentando la dedicación al cliente y reduciendo los tiempos no productivos y las colas. El presente estudio desarrolla un sistema de dispensación automático de fármacos aplicado a farmacias con una rotación de medicamentos media/ baja, valorando tanto su viabilidad técnica como económica. El almacén propuesto es de tipo caótico con sistema de carga, almacenamiento y descarga completamente automáticos. La mayoría de diseños y conceptos expuestos en este trabajo son de desarrollo propio del autor con el único objetivo de la búsqueda de nuevas soluciones para conseguir un sistema de almacenamiento efectivo y de máximo rendimiento.
Resumo:
The environmental impact of landfill is a growing concern in waste management practices. Thus, assessing the effectiveness of the solutions implemented to alter the issue is of importance. The objectives of the study were to provide an insight of landfill advantages, and to consolidate landfill gas importance among others alternative fuels. Finally, a case study examining the performances of energy production from a land disposal at Ylivieska was carried out to ascertain the viability of waste to energy project. Both qualitative and quantitative methods were applied. The study was conducted in two parts; the first was the review of literatures focused on landfill gas developments. Specific considerations were the conception of mechanism governing the variability of gas production and the investigation of mathematical models often used in landfill gas modeling. Furthermore, the analysis of two main distributed generation technologies used to generate energy from landfill was carried out. The review of literature revealed a high influence of waste segregation and high level of moisture content for waste stabilization process. It was found that the enhancement in accuracy for forecasting gas rate generation can be done with both mathematical modeling and field test measurements. The result of the case study mainly indicated the close dependence of the power output with the landfill gas quality and the fuel inlet pressure.
Resumo:
The main goal of the thesis was to further develop harvester head saw device to the Finnish forest machine manufacturer. The work was done from the basis of the manufacturer´s current production model and the earlier study from this same subject called: “Development of chain saw for harvester” Tero Kaatrasalo, 2004. The work was focused to improving the serviceability and reliability of the saw device, but design also included adding few beforehand determined new features into the saw unit. This was done to give some added value for the end customer. The work includes analysis of the earlier saw devices and ideations of the improvements for the structure.
Resumo:
This paper describes the use of the open source hardware platform, denominated "Arduino", for controlling solenoid valves for solutions handling in flow analysis systems. System assessment was carried out by spectrophotometric determination of iron (II) in natural water. The sampling rate was estimated as 45 determinations per hour and the coefficient of variation was lower than 3%. Per determination, 208 µg of 1-10-phenanthroline and ascorbic acid were consumed, generating 1.3 mL of waste. "Arduino" proved a reliable microcontroller with low cost and simple interfacing, allowing USB communication for solenoid device switching in flow systems.
Resumo:
This study investigated the treatment of a liquid radioactive waste containing uranium (235U + 238U) using nanofiltration membranes. The membranes were immersed in the waste for 24-5000 h, and their transport properties were evaluated before and after the immersion. Surface of the membranes changed after immersion in the waste. The SW5000 h specimen lost its coating layer of polyvinyl alcohol, and its rejection of sulfate ions and uranium decreased by about 35% and 30%, respectively. After immersion in the waste, the polyamide selective layer of the membranes became less thermally stable than that before immersion.
Resumo:
The marine environment is certainly one of the most complex systems to study, not only because of the challenges posed by the nature of the waters, but especially due to the interactions of physical, chemical and biological processes that control the cycles of the elements. Together with analytical chemists, oceanographers have been making a great effort in the advancement of knowledge of the distribution patterns of trace elements and processes that determine their biogeochemical cycles and influences on the climate of the planet. The international academic community is now in prime position to perform the first study on a global scale for observation of trace elements and their isotopes in the marine environment (GEOTRACES) and to evaluate the effects of major global changes associated with the influences of megacities distributed around the globe. This action can only be performed due to the development of highly sensitive detection methods and the use of clean sampling and handling techniques, together with a joint international program working toward the clear objective of expanding the frontiers of the biogeochemistry of the oceans and related topics, including climate change issues and ocean acidification associated with alterations in the carbon cycle. It is expected that the oceanographic data produced this coming decade will allow a better understanding of biogeochemical cycles, and especially the assessment of changes in trace elements and contaminants in the oceans due to anthropogenic influences, as well as its effects on ecosystems and climate. Computational models are to be constructed to simulate the conditions and processes of the modern oceans and to allow predictions. The environmental changes arising from human activity since the 18th century (also called the Anthropocene) have made the Earth System even more complex. Anthropogenic activities have altered both terrestrial and marine ecosystems, and the legacy of these impacts in the oceans include: a) pollution of the marine environment by solid waste, including plastics; b) pollution by chemical and medical (including those for veterinary use) substances such as hormones, antibiotics, legal and illegal drugs, leading to possible endocrine disruption of marine organisms; and c) ocean acidification, the collateral effect of anthropogenic emissions of CO2 into the atmosphere, irreversible in the human life time scale. Unfortunately, the anthropogenic alteration of the hydrosphere due to inputs of plastics, metal, hydrocarbons, contaminants of emerging concern and even with formerly "exotic" trace elements, such us rare earth elements is likely to accelerate in the near future. These emerging contaminants would likely soon present difficulties for studies in pristine environments. All this knowledge brings with it a great responsibility: helping to envisage viable adaptation and mitigation solutions to the problems identified. The greatest challenge faced by Brazil is currently to create a framework project to develop education, science and technology applied to oceanography and related areas. This framework would strengthen the present working groups and enhance capacity building, allowing a broader Brazilian participation in joint international actions and scientific programs. Recently, the establishment of the National Institutes of Science and Technology (INCTs) for marine science, and the creation of the National Institute of Oceanographic and Hydrological Research represent an exemplary start. However, the participation of the Brazilian academic community in the latest assaults on the frontier of chemical oceanography is extremely limited, largely due to: i. absence of physical infrastructure for the preparation and processing of field samples at ultra-trace level; ii. limited access to oceanographic cruises, due to the small number of Brazilian vessels and/or absence of "clean" laboratories on board; iii. restricted international cooperation; iv. limited analytical capacity of Brazilian institutions for the analysis of trace elements in seawater; v. high cost of ultrapure reagents associated with processing a large number of samples, and vi. lack of qualified technical staff. Advances in knowledge, analytic capabilities and the increasing availability of analytical resources available today offer favorable conditions for chemical oceanography to grow. The Brazilian academic community is maturing and willing to play a role in strengthening the marine science research programs by connecting them with educational and technological initiatives in order to preserve the oceans and to promote the development of society.
Resumo:
The synthesis and characterization of asymmetric ultrafiltration membranes from recycled polyethylene terephthalate (PET) and polyvinylpyrrolidone (PVP) is reported. PET is currently used in many applications, including the manufacture of bottles and tableware. Monomer extraction from waste PET is expensive, and this process has not yet been successfully demonstrated on a viable scale. Hence, any method to recycle or regenerate PET once it has been used is of significant importance from scientific and environmental research viewpoints. Such a process would be a green alternative due to reduced raw monomer consumption and the additional benefit of reduced manufacturing costs. The membranes described here were prepared by a phase-inversion process, which involved casting a solution containing PET, m-cresol as solvent, and polyethylene glycol (PEG) of different molecular weights as additives. The membranes were characterized in terms of pure water permeability (PWP), molecular weight cut-off (MWCO), and flux and membrane morphology. The results show that the addition of PEG with high molecular weights leads to membranes with higher PWP. The presence of additives affects surface roughness and membrane morphology.
Resumo:
Agroindustrial waste in general presents significant levels of nutrients and organic matter and has therefore been frequently put to agricultural use. In this context, the objective of this study was to determine the chemical composition, nitrogen, phosphorus, potassium, calcium, magnesium and carbon content, as well as the qualitative characteristics through Fourier transform infrared spectroscopy of four samples of poultry litter and one sample of cattle manure, from the southwestern region of Paraná, Brazil. Results revealed that, in general, the poultry litter presented higher amount of nutrients and carbon than the cattle manure. The infrared spectra allowed identification of the functional groups present and the differences in degree of sample humification. The statistical treatment confirmed the quantitative and qualitative differences revealed.
Resumo:
Flame atomic absorption spectrometry (FAAS) and inductively coupled plasma optical emission spectrometry (ICP OES) are widely used in academic institutions and laboratories for quality control to analyze inorganic elements in samples. However, these techniques have been observed to underperform in sample nebulization processes. Most of the samples processed through nebulization system are discarded, producing large volumes of waste. This study reports the treatment and reuse of the waste produced from ICP OES technique in a laboratory of analytical research at the Universidade Federal do Ceará, Brazil. The treatment of the waste was performed by the precipitation of elements using (NH4)2CO3. Subsequently, the supernatant solution can be discarded in accordance with CONAMA 430/2011. The precipitate produced from the treatment of residues can be reused as a potential sample in undergraduate qualitative analytical chemistry lab classes, providing students the opportunity to test a real sample.
Resumo:
The effects of pulp processing on softwood fiber properties strongly influence the properties of wet and dry paper webs. Pulp strength delivery studies have provided observations that much of the strength potential of long fibered pulp is lost during brown stock fiber line operations where the pulp is merely washed and transferred to the subsequent processing stages. The objective of this work was to study the intrinsic mechanisms which maycause fiber damage in the different unit operations of modern softwood brown stock processing. The work was conducted by studying the effects of industrial machinery on pulp properties with some actions of unit operations simulated in laboratory scale devices under controlled conditions. An optical imaging system was created and used to study the orientation of fibers in the internal flows during pulp fluidization in mixers and the passage of fibers through the screen openings during screening. The qualitative changes in fibers were evaluated with existing and standardized techniques. The results showed that each process stage has its characteristic effects on fiber properties: Pulp washing and mat formation in displacement washers introduced fiber deformations especially if the fibers entering the stage were intact, but it did not decrease the pulp strength properties. However, storage chests and pulp transfer after displacement washers contributed to strength deterioration. Pulp screening proved to be quite gentle, having the potential of slightly evening out fiber deformations from very deformed pulps and vice versa inflicting a marginal increase in the deformation indices if the fibers were previously intact. Pulp mixing in fluidizing industrial mixers did not have detrimental effects on pulp strength and had the potential of slightly evening out the deformations, provided that the intensity of fluidization was high enough to allow fiber orientation with the flow and that the time of mixing was short. The chemical and mechanical actions of oxygen delignification had two distinct effects on pulp properties: chemical treatment clearly reduced pulp strength with and without mechanical treatment, and the mechanical actions of process machinery introduced more conformability to pulp fibers, but did not clearly contribute to a further decrease in pulp strength. The chemical composition of fibers entering the oxygen stage was also found to affect the susceptibility of fibers to damage during oxygen delignification. Fibers with the smallest content of xylan were found to be more prone to irreversibledeformations accompanied with a lower tensile strength of the pulp. Fibers poor in glucomannan exhibited a lower fiber strength while wet after oxygen delignification as compared to the reference pulp. Pulps with the smallest lignin content on the other hand exhibited improved strength properties as compared to the references.
Resumo:
The purpose of this thesis was to study how certificates could be used to improve security of mobile devices. In the theoretical part the usage of certificates to improve security is explained. In the practical part a concept of certificate handling middleware is introduced and implemented. This is to demonstrate what kind of functionality is needed to provide an improvement over the current situation in security with mobile devices. The certificate handling middleware is a concept that would work better if implemented directly into mobile device's core functionality. Many of the mobile devices have a certificate store to some degree and often it is not used to store other people's certificates. A certificate store combined with address book and added with possibility to add attributes to the people such as group memberships would be sufficient to satisfy the needs of many emerging sharing and social applications.
Resumo:
The pre-treatment step has a significant influence on the performance of bioenergy chains, especially on logistics. In nowadays conditions it is important to have technologies allowing to convert biomass at modest scales into dense energy carriers that ease transportation and handling. There are such technologies as charring and torrefaction. It is a thermal treatment of organic waste (only woody biomass is considered as a raw material in this work), which aims to produce a fuel with increased energy density. Wood processing is attractive under meaning of green house gas emissions. Charring and torrefaction are promising technologies due to its high process efficiency. It may be also attractive in the future as a renewable fuel with improved storage properties, increased energy density (compared to raw wood) for co-combustion and/or gasification.
Resumo:
The aim of this master’s thesis is to develop an algorithm to calculate the cable network for heat and power station CHGRES. This algorithm includes important aspect which has an influence on the cable network reliability. Moreover, according to developed algorithm, the optimal solution for modernization cable system from economical and technical point of view was obtained. The conditions of existing cable lines show that replacement is necessary. Otherwise, the fault situation would happen. In this case company would loss not only money but also its prestige. As a solution, XLPE single core cables are more profitable than other types of cable considered in this work. Moreover, it is presented the dependence of value of short circuit current on number of 10/110 kV transformers connected in parallel between main grid and considered 10 kV busbar and how it affects on final decision. Furthermore, the losses of company in power (capacity) market due to fault situation are presented. These losses are commensurable with investment to replace existing cable system.
Resumo:
Paper presented in ISA RC23 meeting, Gothenburg July 16th 2010