918 resultados para Voxel phantom


Relevância:

10.00% 10.00%

Publicador:

Resumo:

An approach reported recently by Alexandrov et al (2005 Int. J Imag. Syst. Technol. 14 253-8) on optical scatter imaging, termed digital Fourier microscopy (DFM), represents an adaptation of digital Fourier holography to selective imaging of biological matter. The holographic mode of the recording of the sample optical scatter enables reconstruction of the sample image. The form-factor of the sample constituents provides a basis for discrimination of these constituents implemented via flexible digital Fourier filtering at the post-processing stage. As in dark-field microscopy, the DFM image contrast appears to improve due to the suppressed optical scatter from extended sample structures. In this paper, we present the theoretical and experimental study of DFM using a biological phantom that contains polymorphic scatterers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An inverse methodology for the design of biologically loaded radio-frequency (RF) coils for magnetic resonance imaging applications is described. Free space time-harmonic electromagnetic Green's functions and de-emphasized B-1 target fields are used to calculate the current density on the coil cylinder. In theory, with the B-1 field de-emphasized in the middle of the RF transverse plane, the calculated current distribution can generate an internal magnetic field that can reduce the central overemphasis effect caused by field/tissue interactions at high frequencies. The current distribution of a head coil operating at 4 T (170 MHz) is calculated using an inverse methodology with de-emphasized B-1. target fields. An in-house finite-difference time-domain routine is employed to evaluate B-1 field and signal intensity inside a homogenous cylindrical phantom and then a complete human head model. A comparison with a conventional RF birdcage coil is carried out and demonstrates that this method can help in decreasing the normal bright region caused by field/tissue interactions in head images at 170 MHz and higher field strengths.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In a recent study, severe distortions in the proton images of an excised, fixed, human brain in an 11.1 Tesla/40 cm MR instrument have been observed, and the effect modeled on phantom images using a finite difference time domain (FDTD) model. in the present study, we extend these simulations to that of a complete human head, employing a hybrid FDTD and method of moments (MoM) approach, which provides a validated method for simulating biological samples in coil structures. The effect of fixative on the image distortions is explored. importantly, temperature distributions within the head are also simulated using a bioheat method based on parameters derived from the electromagnetic simulations. The MoM/FDTD simulations confirm that the transverse magnetic field (B,) from a ReCav resonator exhibits good homogeneity in air but strong inhomogeneity when loaded with the head with or without fixative. The fixative serves to increase the distortions, but they are still significant for the in vivo simulations. The simulated signal intensity (SI) distribution within the sample confirm the distortions in the experimental images are caused by the complex interactions of the incident electromagnetic fields with tissue, which is heterogeneous in terms of conductivity and permittivity. The temperature distribution is likewise heterogeneous, raising concerns regarding hot spot generation in the sample that may exceed acceptable levels in future in vivo studies. As human imaging at 11.1 T is some time away, simulations are important in terms of predicting potential safety issues as well as evaluating practical concerns about the quality of images. Simulation on a whole human head at 11.1 T implies the wave behavior presents significant engineering challenges for ultra-high-field (UHF) MRI. Novel strategies will have to be employed in imaging technique and resonator design for UHF MRI to achieve the theoretical signal-to-noise ratio (SNR) improvements it offers over lower field systems. (C) 2005 Wiley Periodicals, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper defines the 3D reconstruction problem as the process of reconstructing a 3D scene from numerous 2D visual images of that scene. It is well known that this problem is ill-posed, and numerous constraints and assumptions are used in 3D reconstruction algorithms in order to reduce the solution space. Unfortunately, most constraints only work in a certain range of situations and often constraints are built into the most fundamental methods (e.g. Area Based Matching assumes that all the pixels in the window belong to the same object). This paper presents a novel formulation of the 3D reconstruction problem, using a voxel framework and first order logic equations, which does not contain any additional constraints or assumptions. Solving this formulation for a set of input images gives all the possible solutions for that set, rather than picking a solution that is deemed most likely. Using this formulation, this paper studies the problem of uniqueness in 3D reconstruction and how the solution space changes for different configurations of input images. It is found that it is not possible to guarantee a unique solution, no matter how many images are taken of the scene, their orientation or even how much color variation is in the scene itself. Results of using the formulation to reconstruct a few small voxel spaces are also presented. They show that the number of solutions is extremely large for even very small voxel spaces (5 x 5 voxel space gives 10 to 10(7) solutions). This shows the need for constraints to reduce the solution space to a reasonable size. Finally, it is noted that because of the discrete nature of the formulation, the solution space size can be easily calculated, making the formulation a useful tool to numerically evaluate the usefulness of any constraints that are added.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Grove, Gillam, and Ono [Grove, P. M., Gillam, B. J., & Ono, H. (2002). Content and context. of monocular regions determine perceived depth in random dot, unpaired background and phantom stereograms. Vision Research, 42, 1859-1870] reported that perceived depth in monocular gap stereograms [Gillam, B. J., Blackburn, S., & Nakayama, K. (1999). Stereopsis based on monocular gaps: Metrical encoding of depth and slant without matching contours. Vision Research, 39, 493-502] was attenuated when the color/texture in the monocular gap did not match the background. It appears that continuation of the gap with the background constitutes an important component of the stimulus conditions that allow a monocular gap in an otherwise binocular surface to be responded to as a depth step. In this report we tested this view using the conventional monocular gap stimulus of two identical grey rectangles separated by a gap in one eye but abutting to form a solid grey rectangle in the other. We compared depth seen at the gap for this stimulus with stimuli that were identical except for two additional small black squares placed at the ends of the gap. If the squares were placed stereoscopically behind the rectangle/gap configuration (appearing on the background) they interfered with the perceived depth at the gap. However when they were placed in front of the configuration this attenuation disappeared. The gap and the background were able under these conditions to complete amodally. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two-dimensional (2-D) strain (epsilon(2-D)) on the basis of speckle tracking is a new technique for strain measurement. This study sought to validate epsilon(2-D) and tissue velocity imaging (TVI)based strain (epsilon(TVI)) with tagged harmonic-phase (HARP) magnetic resonance imaging (MRI). Thirty patients (mean age. 62 +/- 11 years) with known or suspected ischemic heart disease were evaluated. Wall motion (wall motion score index 1.55 +/- 0.46) was assessed by an expert observer. Three apical images were obtained for longitudinal strain (16 segments) and 3 short-axis images for radial and circumferential strain (18 segments). Radial epsilon(TVI) was obtained in the posterior wall. HARP MRI was used to measure principal strain, expressed as maximal length change in each direction. Values for epsilon(2-D), epsilon(TVI), and HARP MRI were comparable for all 3 strain directions and were reduced in dysfunctional segments. The mean difference and correlation between longitudinal epsilon(2-D) and HARP MRI (2.1 +/- 5.5%, r = 0.51, p < 0.001) were similar to those between longitudinal epsilon(TVI), and HARP MRI (1.1 +/- 6.7%, r = 0.40, p < 0.001). The mean difference and correlation were more favorable between radial epsilon(2-D) and HARP MRI (0.4 +/- 10.2%, r = 0.60, p < 0.001) than between radial epsilon(TVI), and HARP MRI (3.4 +/- 10.5%, r = 0.47, p < 0.001). For circumferential strain, the mean difference and correlation between epsilon(2-D) and HARP MRI were 0.7 +/- 5.4% and r = 0.51 (p < 0.001), respectively. In conclusion, the modest correlations of echocardiographic and HARP MRI strain reflect the technical challenges of the 2 techniques. Nonetheless, epsilon(2-D) provides a reliable tool to quantify regional function, with radial measurements being more accurate and feasible than with TVI. Unlike epsilon(TVI), epsilon(2-D) provides circumferential measurements. (c) 2006 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

MRI diffusion tensor imaging (DTI), optimized for measuring the trace of the diffusion tensor, was used to investigate microstructural changes in the brains of 12 individuals with schizophrenia compared with 12 matched control subjects. To control for the effects of anatomic variation between subject groups, all participants' diffusion images were non-linearly registered to standard anatomical space. Significant statistical differences in mean diffusivity (MD) measures between the two groups were determined on a pixel-by-pixel basis, using Gaussian random field theory. We found significantly elevated MD measures within temporal, parietal and prefrontal cortical regions in the schizophrenia group (P > 0.001), especially within the medial frontal gyrus and anterior cingulate. The dorsal medial and anterior nucleus of the thalamus, including the caudate, also exhibited significantly increased MD in the schizophrenia group (P > 0.001). This study has shown for the first time that MD measures offer an alternative strategy for investigating altered prefrontal-thalamic circuitry in schizophrenia. (c) 2006 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An inverse methodology to assist in the design of radio-frequency (RF) head coils for high field MRI application is described in this work. Free space time-harmonic electromagnetic Green's functions and preemphasized B1 field are used to calculate the current density on the coil cylinder. With B1 field preemphasized and lowered in the middle of the RF transverse plane, the calculated current distribution can generate an internal magnetic field that can reduce the EM field/tissue interactions at high frequencies. The current distribution of a head coil operating at 4 T is calculated using inverse methodology with preemphasized B1 fields. FDTD is employed to calculate B1 field and signal intensity inside a homogenous cylindrical phantom and human head. A comparison with conventional RF birdcage coil is reported here and demonstrated that inverse-method designed coil with preemphasized B1 field can help in decreasing the notorious bright region caused by EM field/tissue interactions in the human head images at 4 T.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper evaluates a low-frequency FDTD method applied to the problem of induced E-fields/eddy currents in the human body resulting from the pulsed magnetic field gradients in MRI. In this algorithm, a distributed equivalent magnetic current (DEMC) is proposed as the electromagnetic source and is obtained by quasistatic calculation of the empty coil's vector potential or measurements therein. This technique circumvents the discretizing of complicated gradient coil geometries into a mesh of Yee cells, and thereby enables any type of gradient coil modeling or other complex low frequency sources. The proposed method has been verified against an example with an analytical solution. Results are presented showing the spatial distribution of gradient-induced electric fields in a multilayered spherical phantom model and a complete body model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paper describes a system for measuring radiation efficiency of a small antenna operating alone or in the presence of objects similar to those as in an actual service. The system applies the direct approach to determining the antenna efficiency by measuring the radiated field over the entire sphere surrounding the tested antenna. In order to overcome problems associated with the conventional measuring equipment, the antenna under test is equipped with a miniature built-in VCO signal generator and supported by a low reflectivity dielectric positioner. The positioner is of sufficient size and strength to hold a human head phantom to investigate changes in radiation characteristics when the antenna operates in the presence of a human operator.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A finite difference time domain (FDTD) method is applied to investigate capabilities of an ultra-wide band (UWB) radar system to detect a breast tumor. The first part of the investigations concerns FDTD simulations of a phantom formed by a plastic container with liquid and a small reflecting target. The second part focuses on a three-dimensional numerical breast model with a small tumor. FDTD simulations are carried out assuming a planar incident wave. Various time snap shots of the electromagnetic field are recorded to learn about the physical phenomenon of reflection and scattering in different layers of the phantom.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pelo fato das consequências do uso de aparelhos ortopédicos fixos sobre o periodonto ósseo vestibular e lingual ainda serem uma incógnita para o ortodontista clínico e pesquisador, este estudo teve como objetivo avaliar, por meio de tomografia computadorizada de feixe cônico (TCFC) as alterações em espessura das tábuas ósseas vestibulares e linguais em primeiros molares superiores e incisivos e caninos inferiores, após a utilização de aparelhagem fixa e dos aparelhos Twin Force (grupo A) e Forsus (grupo B) para o tratamento da maloclusão de Classe II, 1ª divisão. Para tanto, obteve-se uma amostra de 22 pacientes jovens adultos, divididos em dois grupos, de acordo com o aparelho propulsor da mandíbula. Grupo experimental A: 11 pacientes, 6 masculinos e 5 femininos, com idade média de 15,09 anos na instalação do Twin Force, e 11 pacientes, 7 masculinos e 4 femininos, com idade média de 15,45 anos na instalação do Forsus. O tempo médio de uso do aparelho Twin Force foi de 3,73 meses e do Forsus, 7,09 meses. O grupo A realizou TCFC antes do início do tratamento (T1), antes da instalação do Twin Force (T2), após a remoção do Twin Force (T3); e o grupo B somente antes da instalação do Forsus (T2) e após a remoção do Forsus (T3). Para comparação entre os tempos T2 e T3 foi utilizado o teste t pareado e entre os tempos T1, T2 e T3 foi utilizada a Análise de Variância (ANOVA) a um critério e o teste post-hoc de Tukey. Para comparação entre os grupos foi utilizado o teste t . Na comparação intergrupos os resultados evidenciaram que não houve diferença estatisticamente significante entre as alterações das espessuras das tábuas ósseas vestibular e lingual; por outro lado, na avaliação intra-grupo, de 48 medidas avaliadas, no grupo A houve reduções estatisticamente significantes nos terços cervical e médio por vestibular, nos dentes anteroinferiores e nos primeiros molares superiores e aumento nos terços cervical e médio, por lingual nos dentes anteriores inferiores, totalizando 25 medidas significantes. Já no grupo B, houve aumento significante da tábua óssea lingual nos dentes anteriores inferiores e redução em vestibular nos molares superiores, totalizando apenas sete medidas significantes, mas com mais medidas significantes de redução óssea vestibular em terços cervical e médio nos primeiros molares superiores, em comparação com o grupo A. Não houve diferença significante entre as medições obtidas com voxel 0,2 mm e 0,4 mm e nem dimorfismo entre os gêneros. As reduções em espessura óssea alveolar, principalmente em terços cervicais e médios vestibulares nos dentes avaliados neste estudo são um alerta ao clínico, para que realize essa abordagem diagnóstica periodontal antes de iniciar o tratamento ortodôntico.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To make vision possible, the visual nervous system must represent the most informative features in the light pattern captured by the eye. Here we use Gaussian scale-space theory to derive a multiscale model for edge analysis and we test it in perceptual experiments. At all scales there are two stages of spatial filtering. An odd-symmetric, Gaussian first derivative filter provides the input to a Gaussian second derivative filter. Crucially, the output at each stage is half-wave rectified before feeding forward to the next. This creates nonlinear channels selectively responsive to one edge polarity while suppressing spurious or "phantom" edges. The two stages have properties analogous to simple and complex cells in the visual cortex. Edges are found as peaks in a scale-space response map that is the output of the second stage. The position and scale of the peak response identify the location and blur of the edge. The model predicts remarkably accurately our results on human perception of edge location and blur for a wide range of luminance profiles, including the surprising finding that blurred edges look sharper when their length is made shorter. The model enhances our understanding of early vision by integrating computational, physiological, and psychophysical approaches. © ARVO.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis has focused on three key areas of interest for femtosecond micromachining and inscription. The first area is micromachining where the work has focused on the ability to process highly repeatable, high precision machining with often extremely complex geometrical structures with little or no damage. High aspect ratio features have been demonstrated in transparent materials, metals and ceramics. Etch depth control was demonstrated especially in the work on phase mask fabrication. Practical chemical sensing and microfluidic devices were also fabricated to demonstrate the capability of the techniques developed during this work. The second area is femtosecond inscription. Here, the work has utilised the non-linear absorption mechanisms associated with femtosecond pulse-material interactions to create highly localised refractive index changes in transparent materials to create complex 3D structures. The techniques employed were then utilised in the fabrication of Phase masks and Optical Coherence Tomography (OCT) phantom calibration artefacts both of which show the potential to fill voids in the development of the fields. This especially the case for the OCT phantoms where there exists no previous artefacts of known shape, allowing for the initial specification of parameters associated with the quality of OCT machines that are being taken up across the world in industry and research. Finally the third area of focus was the combination of all of the techniques developed through work in planar samples to create a range of artefacts in optical fibres. The development of techniques and methods for compensating for the geometrical complexities associated with working with the cylindrical samples with varying refractive indices allowed for fundamental inscription parameters to be examined, structures for use as power monitors and polarisers with the optical fibres and finally the combination of femtosecond inscription and ablation techniques to create a magnetic field sensor with an optical fibre coated in Terfenol-D with directional capability. Through the development of understanding, practical techniques and equipment the work presented here demonstrates several novel pieces of research in the field of femtosecond micromachining and inscription that has provided a broad range of related fields with practical devices that were previously unavailable or that would take great cost and time to facilitate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Deep brain stimulation has shown remarkable potential in alleviating otherwise treatment-resistant chronic pain, but little is currently known about the underlying neural mechanisms. Here for the first time, we used noninvasive neuroimaging by magnetoencephalography to map changes in neural activity induced by deep brain stimulation in a patient with severe phantom limb pain. When the stimulator was turned off, the patient reported significant increases in subjective pain. Corresponding significant changes in neural activity were found in a network including the mid-anterior orbitofrontal and subgenual cingulate cortices; these areas are known to be involved in pain relief. Hence, they could potentially serve as future surgical targets to relieve chronic pain. © 2007 Lippincott Williams & Wilkins, Inc.